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for a more complete discussion of the dimensionality of attenuation coefficients.

The dimensionality of attenuation coefficients

In my previous post, I showed how the singular value decomposition (SVD) can be used
to study the effective rank of a matrix. In this post, I use the SVD to quantify the
dimensionality of attenuation coefficients.

The idea is simple:

1. compute the attenuation coefficients of the elements found in body materials at a
fixed set of energies.

2. place the attenuation coefficient samples as the columns of a matrix

3. compute the SVD of the matrix

4. the principal values are the squares of the singular values divided by the number
of energies

5. the dimensionality of the space is the number of significant principal values.

In order to do this, we need to answer several questions:

1. What elements to use? ICRU report 44[1] gives the elements and fractions by
weight of common body materials so I used the set of elements found in cortical
bone and soft tissue. I also analyzed the case of an externally administered con-
trast agent which contains iodine. The K-edge of iodine is near 33 keV, which is
within the diagnostic region, so it requires a larger number of basis functions to
represent it.

2. How to weight the individual elements? From linear algebra, multiplying a col-
umn (or row) of a matrix by a constant does not affect the rank but it will affect
the principal values since their sum is equal to the sum of the variances of the
columns. The compositions from ICRU 44 have a wide distribution with hydro-
gen, carbon, and oxygen being the most prevalent and the higher atomic number
elements much less common. Another issue is that the variation of the attenua-
tion coefficient with energy depends strongly on the atomic number. The variation
is much larger for higher atomic number so if we use equal weighting they would
dominate the variance. In my analysis, I standardized each of the columns so they
had unit standard deviation by subtracting the mean and dividing by the standard
deviation. All the elements were treated equally so this somewhat over weights
the high atomic numbers and overstates the dimensionality. Other choices will
result in different principal values but I have not found that they affect the basic
conclusions about the dimensionality.
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3. What set of energies to use? In general, we would expect that the larger the
energy range the higher the effective dimensionality (see Fig. 2 of this post). The
lower energy limit has the largest effect on the dimensionality since the cross-
sections of the interactions have the largest variations at lower energy. The energy
range used in diagnostic imaging is a practical compromise between information,
which tends to be highest at lower energies, and dose, which tends to be lower
at higher energy where the body attenuation is lower. In the analysis I used 100
energies equally spaced from 20 to 150 keV. Again, this tends to overstate the
dimensionality since most diagnostic systems use a higher set of energies.

Fig. 1 shows the principal values for two cases. The first case (“bio-only”) I used the
elements found in the normal body materials, bone and soft tissue. In the second case
(“w/iodine”), I added the attenuation coefficient of iodine to the set of elements. The
left panel shows a linear plot while the right panel uses a logarithmic scale. Notice that
with the normal body materials, there is a sharp drop off of the values after the second.
When iodine is included, the third principal value is significant but the fourth principal
value is substantially smaller than the third.

Another way to plot these values is to show the part of the variation remaining as a
function of the number of basis functions. In the notation of this post, I plot
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as a function of the rank r. Fig. 2 shows the results. Again it is clear that two func-
tions represent most (0.9999) of the variation with ordinary body materials and three
functions represent the same fraction (0.9999) when iodine is included.

The low dimensionality of attenuation coefficients has important practical implica-
tions. First, it implies that we can use relatively simple methods to extract the energy
information. In practie, measurements with two different spectra are sufficient. The re-
sults here show that these extract complete information. Using more spectra does not
increase the information although in later posts I will show that these can be used to
lower the noise in the processed data.

Another implication of the low dimensionality is that the information that we can ex-
tract is limited. For example, we cannot distinguish between more than two body ma-
terials. A third material will appear to be a combination of two other materials. But
there are ways to process and display the energy information to extract very different
information from that available from a conventional energy integrating system with no
energy spectrum information.

Matlab code to compute the results in this post is available here.
c©2011 by Aprend Technology and Robert E. Alvarez
Linking is allowed but reposting or mirroring is expressly forbidden.

http://aprendtech.com/wordpress/?p=37
http://aprendtech.com/wordpress/?p=60
http://www.aprendtech.com/blog/Post5/mudim2.zip


1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
µ principal values

 

 

bio−only
w/iodine

1 2 3 4 5
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

log scale

Figure 1: Principal values. Normalized to have unit norm.
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Figure 2: Fraction of variance vs. number of basis functions.
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