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Beam hardening 4: consistency

In the posts on beam hardening, I have shown that it causes the estimate of the line
integral using the single average energy assumption to be nonlinearly related to the actual
line integral. The nonlinearity causes any noncircularly symmetric object to look different
when you look at it from different angles. This inconsistency results in artifacts in the
reconstructed images. That is, the reconstructed image has features in it that are not in
the original object. The inconsistency brings up some interesting questions. Is there a way
to test the data to determine whether it is inconsistent? If so, is there a way to subtract the
inconsistent part and will the result be equal to the original object without artifacts? In this
post, I will review some prior research into this subject.

Consistency conditions—the constant projection sum condi tion

There are two related consistency conditions that have been developed. The first, the
constant projection sum condition, is simple to understand yet quite powerful. By the
definition of a line integral, we can see that the sum or integral of the line integrals in any
direction is equal to the volume of the object in the 3D view. Therefore, if the line integrals
are consistent, the sum should be a constant independent of the view angle.

Fig. 1 is an example. The top plot is a 3D view of an object with its attenuation coeffi-
cient. In this view, the x-y axes are the cross-section coordinates of the slice of the object
and the z-axis is the linear attenuation coefficient. The two boxes are cubes so the objects
are squares in the cross section of side 1 and they have attenuation coefficients equal to
1. In the case of the figure, the sum of the volume of the boxes is equal to 2.

The middle and bottom plots show the line integrals and their squares for lines parallel
to the x and y coordinates respectively. In the middle panel, for lines parallel to the x-axis,
the objects do not overlap so the projections and their squares are all equal to 1 and the
integral is equal to 2. In the bottom panel, for lines parallel to the y-axis, the boxes overlap.
In this case the line integrals are equal to 2 so their square is equal to 4 as shown. In this
case the sum of the linear line integrals is again equal to 2 but the sum of the squares is
equal to 4. As expected, the squares of the line integrals fail the constant projection sum
condition.

The moments of the circular harmonic modulator condition

Cormack[1] was probably the first to derive this condition although it has been discussed
by many papers. The derivation of the condition is pretty complex so I refer interested
readers to Cormack’s paper. The condition is stated in the proof of section 3.f on the sign
changes of the radial modulators of the Fourier series of the projection.

The proof starts from the observation that the line integrals f(p) for a given distance
p of the line from the origin are a function of angle φ and are periodic with period 2π.
In Cormack’s formulation the radii are non-negative, the object is zero outside of radius
1, and the angles go from 0 to 2π. Under some very general mathematical conditions
that are always met in practice, we can therefore express them as Fourier series whose
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Figure 1: A 3D view of an object in a CT image. The x-y axes are the cross-section
coordinates of the slice of the object and the z-axis is the linear attenuation
coefficient. The two boxes are cubes so the objects are squares in the cross
section of side 1 and they have attenuation coefficients equal to 1.



coefficients are a function of p.

f(p, φ) =
+∞∑

n=−∞

fn(p)e
inφ

Similarly, we can decompose any 2D object g(r, θ) as a Fourier series whose coefficients
depend on r

g(r, θ) =
+∞∑

n=−∞

gn(r)e
inθ.

Cormack shows that with the Fourier series the problem separates so for any order n the
radial modulators of the projections depend only on the corresponding radial modulators
of the object. The two are related by an integral equation

fn(p) = 2

∫
1

p

gn(r)Tn(p/r)rdr

(r2 − p2)
1/2

where the Tn are Chebyshev polynomials. From the properties of this series of orthogonal
polynomials, Cormack showed that the radial modulators of the projections satisfy the
following moment conditions

∫
1

0

fn(p)p
kdp = 0, k < n. (1)

Recall that Cormack assumes that the object is zero for radii greater than one, which is
true in all practical cases by properly normalizing the coordinates.

We can use the moment condition to derive the constant projection sum condition but
not vice-versa[2].

Does nonlinearity always lead to inconsistency

Ein-Gal[3] suggested that the moment condition be used to remove the “inconsistent”
portion of the projections. This raises the question whether nonlinear projections always
fail the moment test. A simple counter example shows this is not true. If the object
is circularly symmetric then its squared projections still satisfy the moment condition[2].
Although no real object is perfectly circularly symmetric, the closer the object is to having
this symmetry the less the utility of the moment condition.

Practical implications of consistency conditions

How often is the moment condition useful? In her article, Patch[4] states

Projecting axial computed tomography (CT) data on to the range of the
Radon transform does not improve image quality . However, by monitoring
the degree to which CT data satisfies the Helgason-Ludwig range conditions it
may be possible to detect failing equipment before serious image artifacts are
noticeable.

Helgason-Ludwig are the authors that Patch gives credit for Cormack’s moment condition.
This has also been my experience. The moment conditions, although mathematically

elegant, do not provide any substantial reduction in artifacts. The best way to reduce
these artifacts is to use my method of solving for the line integrals of the basis set co-
efficients from multiple spectrum measurements[5]. Next to this method, the physically
based methods of pre-filtering and linearization of the line integrals also reduce artifacts
but with the limitations that I have discussed in this series of posts.



Conclusion

This concludes my series on beam hardening artifacts. Although they have a long history
in CT, they are still a serious problem resulting in quantitative errors that are poorly un-
derstood and taken into account by clinical users. They also cause streak artifacts from
highly attenuation objects that are a serious problem in head scans of people with metallic
tooth fillings and people with artificial joint replacements or other metallic objects in their
bodies.
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