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Monte Carlo validation of variance formulas

My “SNR with pileup ..."” paper[1] presented a set of theoretical formulas for the noise of
NQ and PHA detectors in Tables | and Il. | have discussed the individual formulas and
Monte Carlo simulations of their validity in past posts in this series. In Section 2.K of the
paper, | presented an overall test of the formulas that compared the A-vector component
variances with a Monte Carlo simulation of the random detector data processed with a
maximum likelihood estimator (MLE). In this post, | expand the discussion in the paper
and present code to reproduce Fig. 2.

The approach

Fig. 2 plots the A-vector variances as a function of the number of photons incident on the
detector for three values of n. The theoretical A-vector components noise variances were
taken from the diagonal elements of the Cramér-Rao lower bound (CRLB) computed with
the functions CRLB_NQ_with_pileup.m and CRLB_PHA_with_pileup.m. These functions
are “cleaned up” versions of the functions used in previous posts in this series. They use
the first difference approach to computing the CRLB with pileup described in this post.

The theoretical variances were compared with the sample variances of a set of A-vector
values computed from random samples of detector data. The code to generate the ran-
dom samples of NQ and PHA data is shown in the text box. It is the same as used in a
previous post.

for ktrial = 1:nMCtrials
dt_pulse = —(1/mean_cps)*log (rand(npulses2gen,1));
% exponentially distributed interpulse times
[npulses_record , egys_rec] = ...
PileupPulses (dt_pulse ,deadtime, t_integrate , 'specinv’,spinv);
nqdat(ktrial , :) = [npulses_record (1), sum(egys_rec)];
% PHA data
counts = histc (egys_rec,egy_bin_edges);
phadat(ktrial ,:) = counts(1l:(end—-1));
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The next step is to calculate A-vectors from the random data with a linear MLE. The
linear MLE, discussed in this post, is

Ay =

(MTCilM)_l MTCIjl} L

Comparing this with the constant covariance approximation to the CRLB, discussed in
this post,

CRLBconst—cov = [MCEIM} - ’

we can see that the linear estimator is
AMLE = [CRLBconst—covMTcil} L.

This is the formula implemented in the code.
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% compute linear MLE for NQ and PHA
[~, ngstats] = CRLB_NQ_with_pileup(specdat, eta);
MLE NQ = ngstats.CRLB_const_covsngstats .M« ngstats . RLinv;

[~, phastats] = CRLB_PHA_with_pileup(specdat, eta);
MLE PHA = phastats.CRLB_const_covsphastats.M'x phastats.RLinv;
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The MLE were then applied to the logarithm of the random detector data as as shown in
the following text boxes for the NQ detector. The L data are the negative of the logarithm
of the measurements divided by the measurements with no object. For the NQ detector,
these “air” values are as as shown. Note that the expected value of Q is (Q) = (N) (E)

1 |[LsNQ = —bsxfun(@minus,log(ngdat),log ([nphotons, nphotonsxEbar]));
2 | As_NQ_calc = (MLE_NQ*LsNQ') '; % use transposes since MLE expects column vector of data

Finally, the bootstrap algorithm was used to compute the mean value and the standard
deviation of the mean. The standard deviation can be used to display error bars on the
Monte Carlo data, although this was not done in the example since they were too small to
display.

bootstatNQ = bootstrp (nbootstrap ,@(x) ToRow(cov(x)),As_NQ_calc);
RA NQ mc = reshape(mean(bootstatNQ),2,2);

RA_NQ_mc_se = reshape(std (bootstatNQ),2,2);

RA_NQ_all(: ,:, keta, kt) = RA NQ mc;

RA_NQ_all_se (:,:,keta, kt) = RA_NQ_mc_se;

CRLB_NQ_all(:,:,keta, kt) = nqgstats.CRLB;
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The PHA results were computed with the same approach.

The plots

The Monte Carlo and theoretical data were plotted by the code in the post code file. The
results are shown in Fig. 1 for the variances vs. the number of photons and in Fig. 2 for
the variance at fixed number of photons vs .

Conclusion

The Monte Carlo values in Fig. 1 and 2 are close to the theoretical formulas. These
results validate but, of course, do not mathematically prove the formulas. Notice that the
NQ variance increases fractionally more than the four bin PHA as 7 increases.
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Figure 1: Theoretical and Monte Carlo sample variances. The top panel shows the NQ
results and the bottom panel the PHA results. The variances are plotted as a
function of the number of photons for three values of n, 0, 0.25 and 0.5. The
lines are the theoretical values and the individual symbols are the Monte Carlo
sample variances.
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Figure 2: Variance as a function of  for fixed number of photons. The top panel is for the
NQ and the bottom panel for four bin PHA detectors.



