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SNR with pileup

In this post I conclude my discussion of my “SNR with pileup ...” paper[1]. I will present
and explain the code to reproduce the “bottom line” figures 3 to 5 of the paper that show
the decrease of the SNR as the pileup parameter η increases. The decrease is rapid and
when the value of η reaches 1, all the counting and PHA detectors have SNR smaller than
the energy integrating detector. The NQ detector SNR decreases rapidly and approaches
but marginally stays above the Q SNR since it uses that signal.

The formulas and code

The complete code to compute the SNR for all detector types as a function of η is in cell 4
of the overall code for this post, P53SNRpileup6.m

The parameters required to compute the SNR with pileup are the spectrum incident on
the detector and η. The SNR of the ideal, Q, N, and NQ detector are computed by the
SNR_with_pileup.m function. The ideal detector SNR was computed using Eq. 36 of my
“Near optimal ...” paper[2].

SNR2

ideal =
t2f
2

∫

nT (E) [δµ(E)]2 dE. (1)

The parameters are explained in the paper: nT (E) is the spectrum transmitted through
the object and incident on the detector, tf is the thickness of the feature in the same
units as the linear attenuation coefficient µ, δµ(E) is the difference of the basis function
attenuation coefficients. The leading term, t2

f/2 was set equal to one in the code since it is
the same for all of the detectors. The ideal SNR was implemented with this code

1 dMus = d i f f ( specdat . mus , 1 , 2 ) ; % d i f f e r e n c e along rows
2 SNR_ideal = trapz ( specdat . egys , specdat . specnum .∗ ( dMus . ^ 2 ) ) ;

The Q detector SNR, from Eq. 34 of the “Near optimal ...” paper[2], is

SNR2

Q =
λt2f
2F

〈δµ〉2Q . (2)

where the notation
〈µ(E)〉Q =

∫

µ(E)q̂(E)dE

means the effective value in the normalized energy spectrum q̂(E). In the equation, λ is
the integral of the photon number spectrum, which is the total number of photons, F is the
excess variance

F =

〈

E
2
〉

N

〈E〉2N

where the notation 〈 〉N means the effective value of a variable in the normalized photon
number spectrum. This was implemented with the following code
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1 specdat . specegy = specdat . egys .∗ specdat . specnum ;
2 specdat . specegy_norm = specdat . specegy / trapz ( specdat . egys , specdat . specegy ) ;
3 % SNR of Q ( energy i n t e g r a t i n g ) not a f fec ted by p i l eup
4 dmusQ = trapz ( specdat . egys , specdat . specegy_norm .∗dMus ) ;
5 SNR_Q = nba r_ i nc i den t∗dmusQ^2/F ;

The photon counting N detector SNR used the variance and the M matrix with pileup
computed by the NQ detector CRLB function, CRLB_NQ_with_pileup.m. with Eq. 20 of
the “Near optimal ...” paper

SNR2

N = (∆A)T MTR−1

L M (∆A)

where ∆A is the difference of the A-vectors in the background and feature regions. As
explained in the “Near optimal ...” paper, by using the attenuation coefficients of the feature
and background regions and, since t2

f/2 was set equal to one in all of the SNR formulas,
this was set equal to

∆A =

[

1
−1

]

.

For the detectors with pileup, the SNR was computed as

SNR2 = ∆A
T
C

−1

A
∆A (3)

where CA is the A-vector covariance. The CRLB was used for the covariance since it gives
an optimal value that does not depend on the type of estimator. The CRLB functions used
the full formula for the Fisher matrix discussed in the last post. Since the Fisher matrix F

is the inverse of the CRLB, this was used directly in Eq. 3 instead of taking the inverse
twice.
The NQ and N detector SNR were implemented with this code

1 % SNR NQ de tec to r
2 [~ , nqsta ts ] = CRLB_NQ_with_pileup( specdat , eta ) ;
3 SNR_NQ = dA ’∗ nqsta ts . F∗dA ;
4 % SNR N de tec to r w i th p i l eup
5 M_N = nqsta ts .M( 1 , : ) ; % e f f mus f o r photon count spectrum wi th p i l eup
6 SNR_N = dA ’∗M_N’ ∗ ( 1 / nqs ta ts . RL(1 ,1 ) )∗M_N∗dA ; % nqsta ts . RL i s cov o f log o f NrecQ

The CRLB with PHA was computed by the CRLB_PHA_with_pileup.m function. This
function used the idx_threshold field of the spectrum structure, which is the indexes into
the egys vector of the PHA bins. This was implemented with the following code from the
overall function for this post P53SNRpileup6.m:

1 for kb in = 1: nb i ns2 tes t
2 specdat . i dx_ th resho l d = i dx_ th resho l ds { kb in } ;
3 [~ , pha_stats ] = CRLB_PHA_with_pileup( specdat , eta ) ;
4 SNR_PHA = dA ’ ∗ ( pha_stats . F)∗dA ; % F i s the inverse of the A−vecto r CRLB
5 . . .

The optimum PHA bins for each value of η are computed by the OptimNbinsThresholdsSNR.m
function. This uses a brute force algorithm of computing the SNR for each possible set
of bins that span the energy spectrum. Since this rapidly leads to a huge number of
combinations the function uses the min_bin_width variable to set the minimum bin. The
search is then in two steps: first the optimal bins are computed to within a minimum
width, then the combinations around this optimal set are searched. Even with this ap-
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proach, the computation takes a long time. The code to implement this is in the box

1 i f get_opt ima l_b ins && ( kb in ==2)
2 %compute PHA4 SNR wi th opt ima l b ins wi th p i l eup
3 sp_w_pi leup = SpectrumWithPi leup ( specdat , eta ) ;
4 % recompute mus f o r energies i n p i l eup spectrum
5 sp_w_pi leup .mus = MusFromMaterials ( mater ia ls , sp_w_pileup . egys ) ;
6 % use 2 steps to get op t ima l b ins .
7 % F i r s t coarse search
8 [ idx_ th resho ld1 , Ethreshold1 ] = OptimNbinsThresholdsSNR ( sp_w_pileup , nbins ( kb in ) , . . .
9 ’ min_bin_width ’ ,2 , ’ dynamic_range ’ , 100 , ’ verbose ’ ) ;

10 % then f i n e search
11 [ idx_thresholdSNR , EthresholdSNR ] = OptimNbinsThresholdsSNR ( sp_w_pileup , nbins ( kb in ) , . . .
12 ’ min_bin_width ’ ,1 , ’ dynamic_range ’ , 100 , . . .
13 ’ close_egys ’ , Ethreshold1 , ’ c l ose_d i s t ’ ,5 , ’ verbose ’ ) ;
14 specdat . i dx_ th resho l d = idx_thresholdSNR ;
15 [~ , pha_stats ] = CRLB_PHA_with_pileup( specdat , eta ) ;
16 SNR_PHA_opt = dA ’ ∗ ( pha_stats . F)∗dA ;
17 SNR_with_deadtime_opt ( keta , 4+kb in ) = SNR_PHA_opt;
18 Ethreshold_opt = [ Ethreshold_opt EthresholdSNR ] ;
19 end

Results

The graphs in Figs. 1 and 3 should be compared with Figs. 3 and 5 of the paper. Fig. 2
was not in the paper but is interesting.

Conclusions

The implications of these results are described in the paper. As discussed in the first post
of this series,

The basic assumption that I will make is that these idealized models provide
an upper limit to the SNR of real detectors. Obviously, I cannot prove this but
it is reasonable to assume that any additional distortions of the data will de-
crease the SNR. The results will apply to a single measurement so all bets are
off if you are, for example, spatially filtering to combine the results from several
detectors or making more than one measurement at different times with the
same detector and combining the results. Iterative algorithms with “regularity”
or smoothness conditions also combine results from different measurements
nonlinearly so they will have different SNRs. But in all these cases, having
higher quality input data will most likely lead to better final results.
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Figure 1: Normalized SNR as a function of counts per dead time. The SNR values are
normalized by dividing by the ideal SNR with complete energy spectrum infor-
mation.
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Figure 2: SNR divided by SNR at zero dead time as a function of counts per deadtime.
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Figure 3: SNR vs counts per dead time with four bin PHA with inter-bin energies optimized
for each value of η. The top panel shows the SNR while the bottom panel shows
the optimal inter-bin energies.


