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SNR with pileup-4: Probability distribution with pileup

The method to compute SNR in my paper, “Signal to noise ratio of energy selective x-ray
photon counting systems with pileup”[1], assumes that the noisy data have a multivariate
normal distribution. Appendix A of the paper describes a Monte Carlo simulation to study
the conditions under which the normal distribution assumption is valid. In this post, I will
expand on the discussion in the paper and present Matlab code to reproduce the figures.

The method

The normal distribution assumption is tested using Royston’s test[2] for multivariate nor-
mality. The background and the algorithm for the test are discussed in this post. In
this post, the Royston test was applied to show that NQ data without pileup are normally
distributed for large enough counts. We cannot simply apply the test to a sample of data
since the test results are also random. However, by repeating the tests and averaging the
results, we can increase the accuracy of our estimate of the true probability of a normal
distribution. For data with pileup, the required counts are also a function of the pileup pa-
rameter, η, the expected photons per dead time. Therefore, the simulations were repeated
for a range of the parameter values. For each value of η, we can plot the mean values of
the Royston test results as a function of the average counts. By fitting a sigmoid function
to these plots, we can determine the counts so that the probability that we not reject the
normal hypothesis is a specified amount, 0.9 for the computations in the SNR with pileup
paper.

The software

The code to generate random data with pileup is in code cell block 4 and is in the text box
below. The approach is the same as in the last post. As shown in the text box, the code
generates both NQ and PHA data from the same random sample of interphoton times and
recorded energies.

1 dt_pu lse = −(1/mean_cps )∗ log ( rand ( npulses2gen , 1 ) ) ;
2 % exponen t i a l l y d i s t r i b u t e d i n t e r p u l s e t imes
3 [ npulses_record , egys_rec ] = . . .
4 Pi leupPulses ( dt_pulse , deadtime , t _ i n t e g r a t e , ’ specinv ’ , sp inv ) ;
5 nqdat ( k t r i a l , : ) = [ npulses_record ( 1 ) , sum( egys_rec ) ] ;
6 % PHA data
7 for kbins_case = 1: nbins_cases
8 counts = h i s t c ( egys_rec , egy_bin_edges { kbins_case } ) ;
9 phadat ( kbins_case , k t r i a l , 1 : nbins ( kbins_case ) ) = . . .

10 counts ( 1 : ( end−1)) ;
11 end

Once a random sample is generated, it used to compute the hypothesis test result for
normality using Royston’s test as implemented in the roystest.m function[3]. For the linear
data this is straightforward but care must be taken with log data to exclude zero values.
With PHA data, the zeros are changed into ones.
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1 counts_dat ( counts_dat ( : ) = = 0 ) = 1;

With the zero counts NQ data, we need to substitute a small number for the recorded
energy Q, which is a floating point number. A value equal to 0.001 of the Q expected value
is used, where the 0.001 fraction was arbitrarily chosen to have a minimal effect on the
results. The bsxfun function was used to promote the number of rows of the substituted
values to be the same as the number of zero counts cases.
1 nqdat ( nqdat ( : , 1 ) = = 0 , : ) = bsxfun ( @plus , nqdat ( nqdat ( : , 1 ) = = 0 , : ) , . . .
2 [1 0.001∗ specdat . Ebar∗mean_cps∗ t _ i n t e g r a t e ] ) ;

The Royston’s test results were stored in the multidimensional array, Hs. To make the
code more readable, a Map container object detsmap was used so the results for each
type of detector could be accessed by their text description. An example is shown in the
text box
1 dets = { ’ NQlin ’ , ’ NQlog ’ , ’ PHA2lin ’ , ’ PHA2log ’ , ’ PHA4lin ’ , ’ PHA4log ’ } ;
2 ndets = length ( dets ) ;
3 detsmap = conta iners .Map( dets , 1 : ndets ) ;
4 . . .
5 Hs( detsmap ( ’ NQlin ’ ) , kdeadtime , kt , krun ) = s ta ts_ roy .H;

A sigmoid function was fit to the average probability as a function of counts data. By
“sigmoid” I mean an S-shaped function that is zero for small counts and one for large
counts. You can see examples in Figures 1 to 3. For ease of computation, I chose
a function with a straight line transition from 0 to 1. It was therefore parametrized by
the x-values of the end points of the transition region. The Matlab nlinfit function was
used to fit the data. The computation was done in code cell 6 during the display of the
data. The mean and standard deviation of the Royston test results were computed using
the bootstrap method and the average counts from the bootstrap were fit to the sigmoid
function. The bootstrap standard deviation was used to compute errorbars for the plotted
data
1 b e t a _ f i t = . . .
2 n l i n f i t ( nphotons ( : ) , Hs_bar_bootstrap ( : ) , @sigmoid_line , [ 0 max( nphotons ) ] ) ;

Results

The probability versus the number photons was computed for different η and different
detectors. The results are in Figures 1 to 3.

The number of photons not to reject the normal model is plotted for different types of
detectors as a function of the pileup parameter η in Fig. 4. I decided to use a straight line
fit for the linear PHA4 data rather than passing a curve through the points as I did in the
paper since it seems the variations are due to noise.

Conclusion

The probability not to reject the normal model approaches one for large enough number
of photons for all detectors. The number of photons required is small compared to those
used in material selective imaging.
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Figure 1: Probability to accept normal model for NQ detector data as a function of the
number of photons. The left column is for the NQ data while the right column of
for the logarithm of the data. Each row is for a different value of the expected
number of photons per dead time parameter, η. The best sigmoid fit function is
plotted as the solid lines.
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Figure 2: Probability to accept normal model for 2 bin PHA detector data as a function of
the number of photons. The left column is for the data while the right column of
for the logarithm of the data. Note that more photons are needed to accept the
normal model with this detector than with the NQ detector.
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Figure 3: Probability to accept normal model for 4 bin PHA detector data as a function of
the number of photons. The left column is for the data while the right column of
for the logarithm of the data. More photons are needed with four bin PHA than
with two bin and the NQ detector.
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Figure 4: Number of photons for 90 percent probability not to reject the normal model for
data from different detector types as a function of the pileup parameter, η. The
left plot is for the linear data while the right plot is for the logarithm of the data.
The solid lines are a straight line fit to the data.
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