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Improve noise by throwing away photons?

Photon counting systems with pulse height analysis (PHA) count the number of photons
whose energy falls within a set of energy ranges, which I will call bins. Usually the bins are
contiguous, non-overlapping, and span the incident energy spectrum so each photon falls
within one bin. A paper[1] by Wang and Pelc showed that the A-vector noise variance can
be decreased by using bins that are not contiguous. That is, if we use bins that only cover
the low and high energy regions and do not include intermediate energies, we can lower
the noise variance. Photons with energies in these intermediate regions are not counted
i.e. they are thrown away. Improving noise by throwing away photons is an interesting
concept and I will discuss it in this post. It turns out to be an example where the choice of
the quality measure fundamentally changes the hardware design, which happens often,
so it is important to study it.

Noise variance–two competing factors

We can understand the rationale for improving noise by throwing away photons from the
equations for the Cramèr-Rao lower bound (CRLB) of the noise variance of the A-vector
components with photon counting noise (see for example my paper[2]):
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In these equations, 〈N1〉 and 〈N2〉 are the expected values of the measurements and M

is the matrix of the effective basis functions for the two spectra. Notice that the variances
depend on two factors: the numerators with 1/ 〈N〉 terms that get larger as the number
of photons decrease and the denominator, which is the square of the determinant of M,
which gets larger as the “conditioning” of the transformation from the measurements to
the A-vector gets better.

Non-contiguous PHA

A PHA system with non-contiguous bins is shown in Fig. 1. The shaded regions repre-
sent the bin response functions and photons with energies in these regions are counted.
Photons with energies in the clear area, the notch, are not counted. Since the photons
in the center of the energy spectrum tend to reduce the difference in average energies in
the bins, we can improve the conditioning of the M matrix and therefore reduce the noise
by throwing away those photons. However, as we increase the notch width, the number of
counts 〈N1〉 and 〈N2〉 decreases and the numerator in equations increases as discussed
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in the previous section. Depending on the relative size of the two factors, there may be an
optimal notch width that gives a minimum variance.
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Figure 1: PHA with a notch. The two PHA bins are shaded gray and the notch is clear.
A typical x-ray tube spectrum is superimposed. Photons with energies in the
notch are not counted. For computational simplicity the notch was specified
using a center at the contiguous PHA-optimal, inter-bin energy and a notch with
lower and upper energies at Ecenter ± Enotch/2. This may not result in the overall
optimum bins since their threshold energies may not be symmetrical around
this center energy but this way of specifying the notch allows us to use one
dimensional plots to display the calculations.

The package for this post has Matlab code to compute the variances as a function of
notch width. The results are shown in Fig. 2. Notice that the variances of both components
go through a minimum although they do so at slightly different notch widths.

The results in Fig. 2 show that the variances indeed go through a minimum that is
lower than the value with contiguous bins. Wang and Pelc show that 3 bin PHA with
non-contiguous bins can also result in lower variance.

Noise covariance

Although variance is important, A-vector noise is highly negatively correlated and is not
fully specified by the variances. As shown by Fig. 3 the variances can be misleading
in some cases. The figure shows a cross section of the two-dimensional probability dis-
tribution of A-vector data. I have shown several times (for example in this post) that the
distribution is accurately modeled as multivariate normal so it has elliptical contour curves.
Even though the distribution is highly non-isotropic with a large negative correlation, the
two variances, which measure the marginal distributions on the A1 and A2 axes are nearly
equal.

The covariance for the two spectrum case is

Cov(A1, A2) = −
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This equation was used to compute the covariance in the bottom part of Fig. 3. Notice
that the covariance has a maximum, that is, it less negative around that same notch width
where the variances reach a minimum.

http://www.aprendtech.com//blog/P47spectrum1/P47spectrum1.zip
http://aprendtech.com/wordpress/?p=266


0 10 20 30 40 50
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

no
rm

al
iz

ed
 v

ar
. o

r 
co

v.

notch width (keV)

 

 

σ2
A1

σ2
A2

cov(A
1
,A

2
)

Figure 2: Variance and covariance vs. notch width with two bin PHA. The data are nor-
malized by dividing by the corresponding optimal values with complete spectrum
information. The PHA bin functions are explained in Fig. 1. Notice that the vari-
ances have a minimum around 10 keV notch width but the covariance has a
maximum (i.e. is less negative).
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Figure 3: A-vector noise covariance.
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Figure 4: SNR vs. notch width. The values are normalized by dividing by the optimal SNR
with complete energy information. With two bin PHA, the SNR is smaller than
the optimal value so the ratio is always less than one.

Noise covariance and SNR

One way to quantify the effect of noise is to see how it affects an imaging task, such as
detecting the presence of a feature in background material. A method to analyze this was
presented in my paper, “Near optimal energy selective x-ray imaging system performance
with simple detectors[3], which was discussed in a series of posts starting with this one.

In the paper and the posts, I showed that the detection performance depends on the
signal to noise ratio (SNR), which for a vector quantity like the A-vector is defined to be

SNR2 = δAT
C

−1

A
δA, (4)

where δA is the difference in the A-vectors of the feature and background regions of the
object and C

−1

A
is the inverse of the A-vector covariance. From this equation, it is clear that

the SNR depends on the full covariance matrix–not just on the variances of the individual
components.

The SNR vs. notch width

We can use the same simulation software used to produce Fig. 2 to compute the SNR
as a function of the notch width. The result is in Fig. 4. Notice that the SNR always
decreases as the notch width increases. The optimal width is zero.

Discussion

The optimal system design depends on the quality measure. If we just display the images
of each A-vector component, then we should minimize the noise variance and the results
in Fig. 2 show that we should use a non-zero notch width where the variances of the
A-vector components go through a minimum.

If we use SNR as a quality measure, then we need to use the full covariance as shown
in Eq. 4. Fig. 2 shows that the covariance becomes less negative for notch widths that
minimize variance. Combining these, Fig. 4 shows that the SNR always decreases as
notch width increases even though the variances decrease. As a result, the optimal notch
width for the maximum SNR is zero.
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Which quality measure to use depends on the end use of the data and is somewhat
subjective. I think SNR is a better measure than the variance for most applications. Stan-
dard detection theory shows that the error rate in the detection imaging task depends on
the SNR. As shown in the discussion of my “Near optimal ...” paper, we can use a lin-
ear transformation to create A-vectors with whitened noise that has zero covariance. The
noise is easier to interpret in these coordinates and, as shown in Section II.H of the paper,
it will have the same SNR as in the original A-vector space.

Covariance is an important part of the noise. Even for the display of the A-vector com-
ponents, the negative covariance can be used, as shown in this post, to produce lower
noise images. Using PHA with a notch affects the covariance in addition to the variances
and may reduce the effectiveness of the correlation noise reduction.

Photon counting with PHA is still not practical for most medical imaging applications so
the most common way to acquire energy-selective data is to switch x-ray tube voltage or to
use two tubes at different voltages. In this case, there is a large overlap between the two
spectra and throwing away photons may reduce the noise for a given patient dose even if
it is done after they go through the patient. This was the idea behind my “active detector”
concept[4]. This detector was more complex than PHA because it used a “sandwich”
configuration of photostimulable luminescent plates. For the active detector, we were able
to show theoretically and experimentally[5, 6] that throwing away photons improves the
noise variance per unit patient dose. I will discuss the active detector concept in future
posts.

The simulations in this discussion assume that the spectrum of the photons transmitted
through the subject is fixed and increasing the notch width means that we are throwing
away photons that the patient has already “paid” a price in dose. If we had a hypothetical
source that only produced photons in the energy regions that are counted, we could in-
crease the flux in those regions while the keeping dose the same as the cases used here.
This would produce lower noise. No such source exists to my knowledge so I will leave it
as an exercise for the reader to modify the simulation software to analyze this case to see
whether now we can increase SNR at the same dose by using a non-zero notch.

–Bob Alvarez
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