
aprendtech.com >> blog >> this post
If you have trouble viewing this, try the pdf of this post. You can download the code

used to produce the figures in this post.

Dimensionality and noise in energy selective x-ray
imaging-Part 3 low noise conventional images

I have been discussing my recently published paper, Dimensionality and noise in en-
ergy selective x-ray imaging , available for free download here. In this post, I will show
how to create low noise images with properties analogous to conventional images from
the energy spectrum data used in the previous two posts of this series to compute the
A-vector images. The results verify that the noise in the ’conventional’ images computed
from energy spectrum information is lower than images computed from the total number
of photons only.

Many people think that energy selective images are noisier than conventional images
but in fact the opposite is true. Material canceled images like bone or soft tissue indeed
appear noisy but they represent different physical quantities than conventional images
so the noise cannot be directly compared. My paper, “Near optimal energy selective x-
ray imaging system performance with simple detectors” discusses this comparison and
shows theoretically that the images made with energy selective information have a larger
SNR than those made with detectors that do not extract the energy information such
as integrated energy or total counts data. It also shows how to compute the low noise
images. The paper is discussed in detail in Part IV of my free ebook, which you can get
by emailing me. In this post, I use image data to illustrate and verify the theory.

Conventional images from A-vector data

We can use the fundamental vector space expansion of the attenuation coefficient to show
how to create a conventional image from A-vector data

µ(E) = a1f1(E) + a2f2(E). (1)

A conventional CT system tries to reconstruct the attenuation coefficient at a single aver-
age energy E0 so we can get an equivalent image from the a vectors at each pixel in the
image by evaluating Eq. 1 at this energy

µ(E0) = a1f1(E0) + a2f2(E0). (2)

Similarly, the data in a conventional projection image depend on the line integral of the
attenuation coefficient on lines through the object from the source to the detector. An
image equivalent to a conventional image can be computed similarly from the A vectors

L(E0) =

∫

µ(x, y, z;E0)ds = A1f1(E0) +A2f2(E0). (3)

Eqs. 2 and 3 can be considered to be vector dot products between the a or A vector
and the f(E0) = [f1(E0), f2(E0)]

T vector

µ(E0) = a · f(E0)
L(E0) = A · f(E0)

.
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Since multiplicative scaling does not matter with images, which are typically scaled for
pleasing appearance, we can replace f(E0) with a unit vector f̂(E0) and all that matters is
its angle with respect to the a or A vector coordinates, which is set by the display energy
E0.

Signal to noise ratio from A-space and the whitening matrix

One way to visualize the SNR is as the distance between two points corresponding to the
A-vectors of the object and the background divided by the standard deviation of the data.
There are several problems for this. The first is that the standard deviation in general
depends on the A-vector so the two points may have different values. However, if the
object is thin enough we can assume they are the same. Even for thicker objects, the
constant standard deviation assumption gives useful insight.

Another problem that is more fundamental is that the noise is not isotropic. Instead,
the noise in the A-vector components is highly (negatively) correlated. Therefore the SNR
will depend on the angle between the A-vectors of the two points. In my “Near optimal ...”
paper, I described a way around this. The A-vector data are first transformed so that the
noise is “white,” that is, with equal variance and uncorrelated. I discussed the whitening
transformation in a previous post. Here I will repeat the formulas. Suppose C is the
covariance of the A-vector data, Φ is the matrix of its eigenvectors arranged as columns,
and D is the diagonal matrix of its eigenvalues. Then the whitening matrix is

Φw = ΦD
−1/2. (4)

Since D is diagonal,

D
−1/2 =







1/
√
λ1

. . .
1/
√
λn







where λk are the eigenvalues.

A-vector and whitened A-vector data

The download package for this post has code to make scatterplots of the A-vector data.
The first several code cell blocks compute the random image data and are the same as
in the previous post. The “make scatterplots of original and whitened data” cell block
displayed below computes the whitened data using the whitening matrix discussed in the
previous section and then displays it. The code in the cell block implements the calcula-
tion. I refer you to the code package for the display of the scatterplots and the images.

%% make s c a t t e r p l o t s o f o r i g i n a l and whitened data
kphot = 3 ; % nphotons case to use
z ts2 = zcomp( dat . As2dim_with_noise ( : , [ ( 2 ∗ kphot ) : ( 2 ∗ kphot +1 ) ] + 1 ) ) ;
Cts2 = cov ( zcomp( z ts2 (geom. i s _ s o f t _ o n l y ) ) ) ;
[ eigvecs , e i gva l s_ma t r i x ]= eig ( Cts2 ) ; % eigenvectors and eigenvalues matr i x
e i gva l s = diag ( e i gva l s_ma t r i x ) ;
mwhiten = eigvecs∗diag ( 1 . / sqr t ( e i gva l s ) ) ; % whiten matr i x uses s q r t o f d iagona l elements
zswht = zcomp( zcomp( z ts2 )∗mwhiten ) ;

As is my wont, I use complex variables to represent the two dimensional data. The kphot
variable selects which Nphotons case to use. The next line converts the A-vectors to a
complex vector. The zcomp function converts a 2 column matrix to the real and imaginary
parts of a complex vector or, if the input is a complex vector, converts it to a 2 column
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Figure 1: Scatterplots of original and whitened A-vector data. The top two panels show
the scatterplots of the data in the soft tissue only region of the phantom (see
the previous post). The top two panels show the original A-vector data and the
bottom panels show the whitened data.

matrix. The third line computes the covariance of the data in the soft tissue only region.
The fourth through sixth lines straightforwardly implement Eq. 4 to compute the whitening
matrix. The seventh line applies it to the image data.

Scatterplots of data

The scatterplots for the original i.e. not whitened data are in the top two panels of Fig. 1.
The bottom two panels show the whitened data. See the caption of the figure for more
details. Notice that the original data are negatively correlated while the whitened data
scatterplots are isotropic since the two A vector components are uncorrelated. Also, the
whitened data are not necessarily positive and indeed are negative in our case.

Optimal SNR conventional image

Combining the ideas of the previous two sections, we can maximize the SNR of a con-
ventional image computed from A-vector data by forming a dot product of the whitened
data with a unit vector in the direction of the vector from the background to the object in
the whitened coordinates. The vector from the air to the bone data is drawn in the lower
right panel of Fig. 1. Notice that the angle of the vector to the soft tissue data is not much
different than for the bone data so the soft tissue SNR will also be close to optimal.
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The images

Conventional total photon number and optimal projection images computed as discussed
in this post are shown in Fig. 12 of the paper..

Conclusion

The image shows that the optimal projection images from A-vector data have a somewhat
better SNR than the conventional total photon number images.

–Robert Alvarez
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