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Estimator parameters

You may ask, what is the fundamental advantage of the new estimator? Yes, it is faster
than the iterative method but so what? With Moore’s law, we can just throw silicon at the
problem by doing the processing in parallel. I have two responses. The first is that not only
is the iterative estimator slow but it also takes a random time to complete the calculation.
This is a substantial problem since CT scanners are real-time systems. The calculations
have to be done in a fixed time or the data are lost. The gantry cannot be stopped to wait
for a long iteration to complete!

The second problem is that, as it has been implemented in the research literature, the
iterative estimator requires measurement of the x-ray tube spectrum and the detector en-
ergy response to compute the likelihood for a given measurement. These are difficult
measurements that cannot be done at most medical institutions. Because of drift of the
system components, the measurements have to be done periodically to assure accurate
results. There may be a way to implement an iterative estimator with simpler measure-
ments but I am not aware of it.

In this post, I will show how the parameters required for the new estimator can be deter-
mined from measurements on a phantom placed in the system. This could be done easily
by personnel at medical institutions and is similar to quality assurance measurements now
done routinely on other medical systems.

The calibrator

The calibrator is a physical device provided by the manufacturer that would be placed in
the x-ray system by medical institution personnel. They would then invoke a program,
again provided by the manufacturer, to acquire x-ray data on the transmission through
the phantom with the source spectra and detector responses used in energy selective
patient scans. The program would use these data to compute an update to the estimator
parameters to account for drift in the x-ray source and detector responses.

The calibrator is shown in Part (a) of Fig. 1. It consists of a set of accurately machined
step wedges composed of two materials such as plastic and aluminum. The thicknesses
of steps are pre-determined to give a rectangular points when plotted in two dimensions
as shown in Part (b) of the figure. The thicknesses could be adjusted to compensate for
different slant lengths for detectors that are off center in a fan beam system.

The linear MLE

I will first discuss how the parameters of the linear maximum likelihood estimator are
computed from the calibrator data. The linear MLE is derived in Sec. II.A of the paper
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The estimator is implemented as a matrix multiplication where the term in brackets in Eq.
1 is a constant matrix that only depends on the system parameters. During a scan, the
measured data L for each line through the object are multiplied by the matrix to give the
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Figure 1: Calibrator. The thicknesses of the step wedges shown in Part (a) are adjusted to
give rectangular set of points when plotted in two dimensions as shown in Part
(b).

estimate. The L vector is actually the negative of the logarithm of the measurements for
each spectra divided by the corresponding measurements with no object in the system.
These could be determined during the calibration process before the phantom is placed
in the system.

To compute the constant matrix, we need to determine the M and R matrices from the
calibrator data. As discussed in the paper, the M matrix is the gradient of the measure-
ment vector as a function of A-vector

M =
∂L

∂A
. (2)

Theoretically, the gradient is evaluated at the operating point but, for the purpose of the
estimator, I used the average value over all the calibration data. The M matrix is then
the coefficients of the least squares fit of the calibration data Lcalib as a function of the
calibrator A-vectors. In Matlab notation,

M = Acalib\Lcalib. (3)

This can be understood as follows. Suppose L and A are linearly related so

L1 = m11A1 +m12A2

L2 = m21A1 +m22A2

.

Then, for example,
∂L1

∂A1

= m11

and so on for all the elements of the M matrix.
The R matrix is the covariance of the measurement data. Again, theoretically it is the

covariance for the operating point but the estimator uses a value for the center of the
calibration region. The calibration phantom steps are actually rectangles so the data for
each step provide samples of the data with constant A-vector. We can then compute the
R matrix as the sample covariance of the data for a single step.
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Figure 2: Sample interpolation table. The circles are the linear MLE estimates and the
crosses are the actual thicknesses. The corrections are the arrows. Note that
the linear MLE estimates are not on a rectangular lattice.

The correction table

Once we have the linear MLE, we can use it with the calibrator data to compute the
correction table. The corrections are the difference between the linear MLE estimate and
the actual thicknesses of the calibrator step wedge for each step. An example is shown in
Fig. 2. Code to reproduce the figures is available here.

Correction table look up

During the operation of the estimator, the input to the correction table is the linear MLE
estimate. As shown in Fig. 2, these are not on a rectangular lattice so we cannot apply
standard functions such as Matlab’s interp2. In the implementation for the paper, I used
John D’Errico’s gridfit function. In the function documentation, he says

Gridfit is not an interpolant. Its goal is a smooth surface that approximates
your data, but allows you to control the amount of smoothing.

You can see the gridfit parameters I used in the code for the AtableSolveEquations

function.
Another problem is that noise may produce linear MLE estimates that are outside

the region spanned by the calibration data. Unlike most interpolating (or function ap-
proximating to be more precise functions, gridfit will extrapolate. However, although
AtableSolveEquations has code to implement this, I did not use that feature. Instead I
chose the nearest point on a line from the point with noise to the centroid of the calibration
data. The method is described in detail in Section II.D and Fig. 5 of the paper. See also
the code in AtableSolveEquations.
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Conclusion

The ability to derive the estimator parameters from measurements with the x-ray system
hardware without requiring specialized instruments is a major advantage for the new es-
timator. It makes possible the use of the estimator routinely in clinical settings instead of
just as a demonstration of the feasibility of the technique.

–Bob Alvarez
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