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Estimators for Energy-selective imaging—Part 1

In a previous post I described the application of statistical estimator theory to energy se-
lective x-ray imaging. I introduced a linearized model for the signal and noise and in a
subsequent post I described a linear maximum likelihood estimator (MLE) that achieved
the Cramèr-Rao lower bound (CRLB). In many applications, such as CT, the linear model
is not sufficiently accurate. In this post, I will start the discussion of my paper[1] “Estimator
for photon counting energy selective x-ray imaging with multi-bin pulse height analysis.”
The paper describes an estimator that is accurate for a wide dynamic range that also
achieves the CRLB and has other desirable properties such as fast and predictable com-
putation time and being implementable in a clinical institution as opposed to a physics
lab. This post frames the discussion by describing general aspects of computing the A-
vector from energy selective measurements and several estimators that are widely used
and their properties.

edit: I added a plot of the ratio of the least squares estimator variance to the CRLB
variance for least squares estimator when the number of bins is larger than the A-vector
dimension. Added detail to the MLE when the number of measurements and dimension
are equal.

edit 2: I changed the name of the “least squares estimator” to “multinomial approxima-
tion estimator.”

Estimation as a transformation

In my previous post, I derived the fundamental equations relating the A-vector to the x-ray
measurements

λk (A) =

∫

dk(E)nsource(E)e−A1f1(E)−A2f2(E)dE, k = 1 . . . K. (1)

In these equations, λk (A) is the total counts in measurement k. It will soon become
clearer why I use λ for the counts. The source photon number spectrum is nsource(E) and
Aj is the line integral of the coefficient of the j − th basis function fj(E). The energy
response of each measurements is dk(E), which can be the energy response of bin k
with PHA or the k-th switched source spectrum, dk(E)nsource(E) . Although the theory is
applicable to integrated energy measurements, as shown in my dissertation, I will assume
here that we use photon counting detectors.

If we have two measurements, as has been the case throughout most of the history
of energy selective imaging, hence the name dual energy imaging, then we can consider
Eqs. 1 to define a transformation between the two-dimensional spaces, the A-vector and
the measurement vector. In my paper, I discuss this at some length and show that under
reasonable conditions, such as the effective spectra being different and the basis functions
linearly independent, the transformation is invertible.

The multinomial approximation estimator

Although we know that the transformation is invertible, how do we invert it? The most
common approach is to approximate the components of the A-vector with a second order
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multinomial in the log of the individual measurements.

Âj = cj0 + cj1L1 + cj2L2 + cj3L
2
1 + cj4L

2
2 + cj5L1L2, j = 1 . . . 2. (2)

I call this the multinomial approximation estimator because the coefficients cjk are calcu-
lated from a least squares multinomial fit to a set of calibration data such as with a step
wedge phantom made from two materials and with many combinations of thicknesses. In
this case, we can use the attenuation coefficients of the calibration materials as the basis
set so the A-vector components are simply the thicknesses of the two materials[2].

This method has been widely used but has several problems. One is that, with PHA,
we can have many more measurements than the dimension of the A-vector. It is easy
enough to generalize Eqs. 2 but what does this do to the noise? We need to apply
statistical estimator theory to answer this question.

MLE when the number of measurements and dimension are equal

Statistical estimator theory[3] provides many approaches to designing estimators. The
maximum likelihood estimator (MLE) is widely used because it is (relatively) easy to im-
plement and has good statistical properties. For example, it is known to achieve the CRLB
for a large number of observations. In my 1976 paper[4], I discussed the MLE when the
number of measurements and dimension are equal. With negligible pileup, the counts can
be modeled as independent Poisson random variables. The distribution of the counts in
each energy bin is

p(nk) =
λnk

nk!
e−λk(A) (3)

where λk (A) is the expected value of the counts in bin k, given by Eq. 1. As indicated, it is
a function of the A-vector, A. Since the bin counts are independent, their joint distribution
is the product of the individual marginal distributions and the log of the joint distribution is
the sum of the logs of the distributions of the bins

L (A) = log (pn1,...,nK
) =

K
∑

k=1

[nk log (λk (A))− λk (A)− log (nk!)] . (4)

where K is the number of spectra or PHA bins.
To find the MLE, we consider Eq. 4 to define a function of A for a fixed set of measure-

ments nk, differentiate with respect to A and set the derivative equal to zero. Carrying out
the operation

∂L

∂Aj

=
2
∑

k=1

[

∂L

∂Aj

(

nk

λk

− 1

)

]

= 0 (5)

Evaluating this equation for all the components of A results in two homogeneous linear
equations for the quantities nk/λk − 1.

∂L
∂A1

(

n1

λ1
− 1

)

+ ∂L
∂A1

(

n2

λ2
− 1

)

= 0

∂L
∂A2

(

n1

λ1
− 1

)

+ ∂L
∂A2

(

n2

λ2
− 1

)

= 0

With the number of measurements and dimension equal, the unique solution is

nk

λk

− 1 = 0, k = 1, 2. (6)



That is n1 = λ1 and n2 = λ2. This is valid if the determinant of the coefficients is not equal
to zero. For the two dimension case with two measurements this is

det

(

∂λ1

∂A1

∂λ2

∂A1

∂λ1

∂A2

∂λ2

∂A2

)

6= 0. (7)

This equation says that the Jacobian of the transformation from λ to A is not zero. If this
is true, then Eqs. 6 and therefore the MLE are solved by setting the expected value of
the measurements equal to the measured photon counts. That is, solve the deterministic
equations with the measured data. One way to do this is with the multinomial approxima-
tion estimator in Eq. 2and in this case it is also the MLE.

multinomial approximation estimator with more measuremen ts than
dimensions

If the number of measurements is greater than the dimension, then there is no unique
solution to Eqs. 5. We can generalize the multinomial approximation estimator in Eq. 2 for
more measurements as we have sufficient calibration data to determine the coefficients
with a least squares algorithm. However, now there is no guarantee that the multinomial
approximation result is the MLE or that it achieves the CRLB. Fig. 4 shows that if the
number of spectra is greater than the A-vector dimensions, the multinomial approximation
estimator does not achieve the CRLB. Instead the variance is several hundred times larger
than the CRLB, an obviously undesirable result!

MLE with more measurements than dimensions—the iterative
implementation

Another approach to solving the equations when the number of measurements is greater
than the dimension is to maximize Eq. 4 iteratively. This is the algorithm described by
Roessl and Proksa[5] that was used in an experimental system by Schlomka et al.[6].
Their approach assumed that you know the source energy spectrum and the energy re-
sponse of individual PHA bins. Their experimental implementation was a technical tour-
de-force where they measured the spectrum with high resolution multi-channel analyzers
and the detector energy response at a synchrotron radiation laboratory.

For their implementation, we can start with the Eq. 4 for the likelihood. We can search
for the maximum iteratively if we have a way to compute λk (A). If we know the source
spectrum nsoure(E) and the detector energy response dk(E), and we have tabulated data
for the attenuation coefficients of the basis materials fk(E), then we can use Eq. 1 to
compute L and use an iterative algorithm like Matlab’s fminsearch to maximize the log-
likelihood. The implementation actually minimizes the negative, which is equivalent to
maximizing.

A possible problem is that multiple local maxima keep us from finding the overall max-
imum. Figs. 2 and 3 show the the log-likelihood functions are well behaved. Fig. 2 is a
plot of the log-likelihood function for the one dimension case. The function is plotted for
several values of the photon counts and you can see that it has only one peak that be-
comes sharper and therefore the variance of the random errors decreases as the number
of photons increases. Fig. 3 shows that this is also the case with a two dimension basis
set. Notice that the contours in the bottom panel are not circular so the errors in the two
components will not have the same variance and they will be negatively correlated.
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Figure 1: Variance with multinomial approximation estimator for two and three bins. The
dots or circles are the variances of the Monte Carlo results for a set of points
representing objects with difference thicknesses. The solid lines are the CRLB.
The top row of graphs show the variance of the two A-vector components with
two bins. Notice that they are equal to the CRLB variance except for random
fluctuations. The middle row is for three bins. I fit a straight line to the Monte
Carlo variance and used it to compute the ratio of the multinomial approximation
estimator variance to the CRLB variance. This is shown in the bottom row. If
the number of spectra is grater than the A-vector dimension, the multinomial
approximation estimator variance is many times larger than the CRLB.
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Figure 2: log-likelihood function for estimating a single material thickness from a photon
counting detector as a function of the expected number of counts. The arrow is
at the actual thickness. The maximum likelihood estimator selects the thickness
that maximizes the likelihood (or its logarithm) and, in this case, it selects the
correct value. The CRLB is the radius of curvature at the maximum value and
the curves show that as the counts increase the radius gets smaller.
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Figure 3: log-likelihood function for the A-vector with a two function basis set from 5 bin
PHA data. The top panel is a 3D view. Values less than 256 of the log-likelihood
function are “clipped” for display purposes. The bottom panel shows ellipses
that were fit to the contours of the log-likelihood function. The major and minor
axes of the ellipses are different so the two components have different CRLB
variances. Also the major axes are tilted so the components are (negatively)
correlated.
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Figure 4: Variance of A-vector components with iterative MLE as a function of object thick-
ness. Ten trials of random 3-bin PHA data were generated for each of 50 points
from zero thickness to 10 cm. The variance of the estimates for the ten trials
are compared with the CRLB, which is the solid black line. Notice that except
for random variations the variance is equal to the CRLB so the iterative MLE is
“efficient” for the range of photon counts tested.



Fig. 4 shows the Monte Carlo variance and the CRLB for the iterative MLE three bin
case. Comparing this with the bottom row of Fig. 1, the variance is much smaller with the
iterative than with the multinomial approximation estimator

Conclusion

The multinomial approximation estimator has good performance if the number of measure-
ments is equal to the A-vector dimension but has poor performance with more measure-
ments. The iterative MLE has good performance even if the number of measurements is
greater than the dimension but it has many problems. One is that the implementation I de-
scribe requires measurements of the source spectrum and the detector energy response.
These are difficult measurements that require instruments not commonly available in clin-
ical institutions. The measurements have to be repeated periodically since the system
components drift with age. The iterative algorithm also has computation problems. It is
complicated and can fail to converge. Perhaps more importantly it does not have a fixed
computation time, which is required for real time performance with medical equipment. In
the next post, I will describe an algorithm that addresses these problems.
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