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Status of discussion of "Near optimal ..." paper

In this post I will summarize where I stand in the discussion of my paper, “Near optimal
energy selective x-ray imaging system performance with simple detectors.” You will find it
useful to download a free copy of the paper to follow along with this discussion.

The paper discusses whether and how much you can improve the signal to noise ratio
(SNR) of an x-ray imaging system by measuring the energy spectrum of the radiation
transmitted through the object instead of just measuring the total number of photons or
their total energy as is now done with conventional systems. This question was addressed
by a 1985 paper by Tapiovaara and Wagner[1]. They found that you can improve the SNR
and gave a formula for the optimal SNR. That is, the best SNR that can be achieved by an
x-ray system that measures the complete energy spectrum.

In their formulation, Tapiovaara and Wagner achieved the optimal SNR by multiplying
the measured spectrum by an optimal weighting function and then integrating the prod-
uct function over energy to give the quantity that is displayed in the image. They did
not use the fact that the x-ray attenuation coefficient, which determines the information
that you can get with an x-ray system, can be expressed as a linear combination of two
functions of energy multiplied by constants as I have discussed many times in this blog.
This is additional information that Tapiovaara and Wagner did not use so my question was
whether using this information helps in making lower SNR images from energy spectrum
measurements.

I found that using the decomposition helps in two ways. First, I showed that by using
the information you can make images from low energy-resolution data with SNR near the
optimum. This is different from Tapiovaara and Wagner who assumed that you measure
the complete energy spectrum with infinitely high resolution. Also, with the decomposition
you get additional information about the object that is not present in the single image that
is produced by the Tapiovaara and Wagner approach.

The mathematical notation used in this post is explained in Table 1.

Use of SNR to characterize energy-selective imaging system performance

TW and my paper use SNR as a measure of system performance. Evaluating and com-
paring imaging system performance is a huge subject and many methods have been
developed with opposing proponents. If this interests you, read the prologue section of
Barrett and Myers book, Foundations of Image Science[2] to get a flavor of the com-
plexity and the opposing schools of thought. As an aside, the book itself is well worth
buying although I wish they would come out with an e-book version since the book’s size
and weight makes it a pain to read.

I wanted to focus on the energy dependent information in my paper and most people
would agree that SNR is a useful parameter to describe the quality of a medical imaging
system so the discussion was based on it. If the noise is described by a multivariate
normal distribution, this post shows that the error rate for hypothesis testing depends only
on the SNR. The use of the multivariate normal to describe noise in an energy-selective
system is justified here. This post describes its properties, the use of matrix calculus to
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Figure 1: Imaging task for SNR computation.

manipulate it, and linear transformations to make the noise components uncorrelated and
with equal variance, which are all used in the paper.

The optimal signal to noise ratio of an energy-selective x-ray system

TW derived their results by analyzing the system shown in Fig. 1. The imaging task de-
cides from two measurements, one in a background region and the the other in a region
that may contain an object of interest, whether the object is present. For example, the
object might be a lung nodule in a chest x-ray image and the task is to decide from mea-
surements of a region that may contain the nodule and a neighboring region known not to
have a nodule whether the nodule is present.

I discussed the TW optimal SNR with complete energy spectrum information in this post.
The optimal SNR for a low contrast feature, that is when µf tf ≪ 1 is

SNR2

optimal = λt2f

〈

δµ2

〉

N
/2. (1)

Writing this out as an integral,

SNR2

optimal =
t2f
2

∫

n(E)δµ2(E)dE
∫

n(E)dE
(2)

In words, it is proportional to the number of photons, the thickness of the feature squared,
and the effective value of the square of the difference of the attenuation coefficients of the
feature and background.

In this post I used a Monte Carlo simulation to compare the TW optimal SNR with con-
ventional energy integrating and photon counting detectors. The optimal SNR2 is approx-
imately twice as large as the value with an energy integrating, which is used by almost
all commercial medical x-ray imaging systems. Since the SNR2 is proportional to patient
dose, this means that we could potentially reduce the noise by half or make comparable
images with half the dose by using the energy information. Intuitively, the reason for this
is that the object changes not only the total energy of the transmitted photons but also the
shape of their energy spectrum. Conventional systems that only measure the total energy
(or total number) of the photons are throwing information. By using this change in the
spectrum, we can get more information about the object for the same dose.

The SNR with the two function decomposition

This post shows how to apply statistical estimation theory to analyze energy-selective
systems that use the two function decomposition. This post shows how to use the two
function linear decomposition to compute the SNR so the results can be directly compared
with the TW optimal. I call this the A-space method. To use the decomposition, all we have
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Table 1: Symbols

tb thickness of feature µb feature att. coeff.
tf thickness of background µf background att. coeff.
n(E) photon number spectrum λ expected number of photons

E photon energy λ
∫

n(E)dE
〈〉N eff. value number spectrum 〈E〉k eff. value of energy spectrum k
µ(E) a1f1(E) + a2f2(E), linear decomposition δµ µf − µb

a1, a2 basis set coefficients f1(E), f2(E) basis functions

a
[

a1, a2
]T

[]T matrix transpose

A1, A2 basis set coefficient line integrals A1

∫

P a1(r)dr P line, r position

A
[

A1, A2

]T
A

∫

P a(r)dr

SNR signal to noise ratio CA covariance of A

I measurement vector for spectra L −log (I/I0)

M matrix of basis funcs. for mnt. spectra M ∂L
∂A

to do is use the attenuation coefficients of the background and feature materials as the
basis functions. That is

f1(E) = µb(E)
f2(E) = µf (E)

. (3)

This is perfectly ’legal’ because in a two function linear space any two non-collinear func-
tions, that is functions that are not multiples of each other, also span the space. The post
shows that the approximation errors introduced by using even materials with similar com-
position are not substantially larger than those using an optimal set of basis functions
derived from the singular value decomposition.

If we assume that the noise has a multivariate normal distribution (discussed here), the
SNR2 for the TW imaging task with the A-space method is

SNR2 = δATC−1
A δA (4)

where δA = 〈Afeature〉 − 〈Abackground〉 is the difference between the A vectors in the
background and feature region and CA is the covariance of the A vector measurements.

This post showed that the inverse of theA vector measurement covariance is related to
the covariance of the detector data by C−1

A =
(

MTC−1
L M

)

so substituting in Eq. 4,

SNR2 = δATC−1
A δA

= δATMTC−1
L MδA (5)

where M is the gradient of the log of the measurements

M =
∂L

∂A

and L = − log(I/I0), I is the vector of the measurements and I0 is the measurement
vector with no object in the beam. In this post, I show that M is also the effective attenua-
tion coefficient matrix with the transmitted spectra. The columns of M are the average or
effective attenuation coefficients of the each of the basis functions and the rows are the
effective values for each of the measurement spectra.
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From Eq. 5, in order to describe the SNR of a detector, we need formulas for the effec-
tive attenuation coefficient matrix M and the covariance of the log of the measurements
CL. These were discussed in Section II.F of the paper.

Computation of M

We can understand the computation of M with a simple example: two-bin pulse height
analysis (PHA). Suppose the spectrum is represented by a structure specdat with fields
specnum, a one dimensional array specifying the number of photons, and egys, an array
of the corresponding energies in keV. Also suppose the threshold index for the PHA is
kthreshold so photons with energies less than egys(kthreshold) are counted in the first
bin and those with larger energies are in the second bin. Also suppose the basis functions
are in a two-column matrix fbasis with one row for each energy in specdat.egys. The code
to compute the M matrix is shown in the following inset

%% compute M f o r two−b in PHA
[ specdat . specnum , specdat . egys ] = . . .

XrayTubeSpectrumTasmip (120 , ’ number_spectrum ’ , ’ c l i p ze r o s ’ ) ;
% 120 kV , 1 keV step

negys = numel ( specdat . egys ) ; % number o f energ ies i n spectrum
kth resho ld = round ( negys / 2 ) ; % th re sh o l d index f o r the two−b in PHA

% basis fu n c t i o n s are the a t t e n u a t i o n c o e f f i c i e n t s o f water and aluminum
f b a s i s = zeros ( negys , 2 ) ;
f b a s i s ( : , 1 ) = xraymu ( ’H2O ’ , specdat . egys ) ;
f b a s i s ( : , 2 ) = xraymu ( ’ Al ’ , specdat . egys ) ;

% compute M
M = zeros ( 2 , 2 ) ;
i dxs2b ins = { 1 : k th resho ld , ( k th resho ld +1 ) : negys } ; % indexes to the PHA bins
for kb in = 1:2

idxs = idxs2b ins { kb in } ;
for kbasis = 1:2

M( kbin , kbasis ) = sum( specdat . specnum ( idxs ) . ∗ f b a s i s ( idxs , kbasis ) ) / . . .
sum( specdat . specnum ( idxs ) ) ;

end
end
%% d i sp l a y r e s u l t
disp ( ’M ’ )
disp (M)
M

0.3143 0.8227
0.1844 0.2067

The first row of M is the effective attenuation coefficients of water and aluminum for the
spectrum below the threshold energy. Notice that the attenuation coefficient of water in the
first column is smaller than the attenuation coefficient of aluminum in the second column.
The second row is the values for the spectrum above the threshold. These correspond to
a larger energy so they are smaller than the corresponding values in the first row.

Covariance for photon counting detector with pulse height analysis

The next series of posts described how to compute the covariance of the measurements
CL for common detector types.



This post discusses the photon counting detector with pulse height analysis (PHA).
The post shows that the SNR with K bins is

SNR2

K =
t2f
2

K
∑

k=1

〈n〉k 〈µ2 − µ1〉
2

k (6)

where tf is the thickness of the feature object in Fig. 1, 〈n〉k is the expected number
of counts and 〈µ2 − µ1〉k is the effective value of µ2(E) − µ1(E) in the spectrum of bin k.
Letting the number of bins go to infinity, we can use Eq. 6 to derive the SNR with complete
energy information

SNR2

ideal =
λt2f
2

[
∫

n̂(E)δµ(E)dE

]

2

= λt2f 〈δµ〉
2

N /2

where n̂(E) is the spectrum normalized by dividing by its integral

n̂(E) =
n(E)

∫

n(E)dE

and δµ(E) = µ1(E)− µ2(E) is the difference of the two basis functions. As expected, this
is the same as the TW optimal SNR in Eq. 1 except for the factor of 1/2 that is due to using
two measurements (in the background and feature region) instead of one as is assumed
in Eq. 5.

NQ detector

In this post and this post I discuss the NQ detector that simultaneously measures the
number of counts and the integrated energy. The derivation also gives the SNR with
photon counting and energy integrating detectors individually. These are

SNR2

N =
λt2f
2

〈δµ〉2N

and

SNR2

Q =
λt2f
2F

〈δµ〉2Q

The SNR with using both signals from the NQ detector at the same time

SNR2

NQ =
λt2f
2






〈δµ〉2N +

(

〈δµ〉N − 〈δµ〉Q

)

2

F − 1







where F = 〈E2〉/〈E〉2 is the excess variance of the spectrum. In the posts on this detector,
I show that

SNR2

ideal ≥ SNR2

NQ ≥ SNR2

N ≥ SNR2

Q.

That is, the NQ detector is better than either detectors that only count photons or measure
integrated energy individually.
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Figure 2: Comparison of NQ and NKQ detector. The NQ detector shown in panel (a) (top)
splits the signal from the sensor and simultaneously measures the total energy
(Q) and counts the number of photons (N). The NKQ in panel (b) (bottom) also
splits the signal and measures the total energy but does K bin pulse height
analysis on the other signal.



The NKQ detector

My last post discussed the NKQ detector, which is a generalization of the NQ detector.
Schematic diagrams of the two detectors are shown in Fig. 2

I showed that the covariance of the log of the NKQ signals is

Cov ({log(Nk), k = 1 . . . K} , log(Q)) =
1

λ
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where λk is the expected value of the total number of photons and 〈E〉k is the effective
energy for the photons in bin k. F is the excess variance

F =

〈

E2
〉

〈E〉2
.

Conclusion

That brings us up to date. In the next posts, I will compute numerical values for the
SNR with each of the detectors using the A-space method and compare them to the TW
theoretical optimum.
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