
Energy Dependent Informationin X-Ray Imaging:Part 2. Information Extra
tion and NoiseRobert E. Alvarez and Leonard A. LehmannApril 11, 2013The information in the energy spe
trum of X-ray photons transmittedthrough the body 
an be extra
ted by using ve
tor spa
e te
hniques. Thisinformation 
an be used to redu
e errors due to the two important sour
es ofextraneous detail in X-ray images: overlying anatomi
al stru
tures and ran-dom noise. The e�e
t of intervening anatomy 
an be redu
ed by te
hniquesthat use the energy dependent information to sele
tively remove the e�e
t ofmaterials of a given 
hemi
al 
omposition from the image, The e�e
t of ran-dom noise is redu
ed by energy sele
tive systems be
ause they extra
t moreinformation for the same dose than 
onventional systems. Energy sele
tivesystems 
an produ
e 
onventional images with the same noise varian
e as
onventional systems and they 
an dete
t small obje
ts with a better signalto noise ratio than 
onventional systems.Contents1 Introdu
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e . . . . . . . . . . . . . . . . . . 155.2 Comparison of Signal to Noise Ratio . . . . . . . . . . . . . . 176 Con
lusions 18Referen
es 221 Introdu
tionThe �rst paper of this series (Alvarez 1983[2℄) presented a ve
tor spa
e method for repre-senting the energy dependen
e of X-ray attenuation and for extra
ting this informationfrom simple measurements. In this paper, we present te
hniques that use this informationto derive medi
ally useful images and study the noise in these images.One of the most important sour
es of diagnosti
 errors in radiologi
al imaging is extra-neous detail. There are two prin
ipal sour
es of this extraneous detail in medi
al images.The most 
ommonly noted is X-ray quantum noise and other random noise in the mea-surement apparatus. However, another equally important sour
e of noise is �
lutter� dueto overlying anatomi
al features, whi
h 
an mask the diagnosti
ally signi�
ant indi
ia.Energy sele
tive methods 
an be used to signi�
antly redu
e the e�e
ts of both types ofnoise.In the �rst part of this paper, we des
ribe te
hniques that 
an remove the e�e
t ofa material of a given 
omposition from the image. This type of pro
essing is uniqueto energy sele
tive radiography and is e�e
tive in removing anatomi
al 
lutter fromimages. It 
an be used, for example, to produ
e 
hest radiographs with either bone orsoft tissue removed. It is also useful in 
omputed tomography for produ
ing data thatare independent of the e�e
ts of a parti
ular material.In the se
ond half of the paper, we dis
uss the e�e
t of noise in energy sele
tivesystems. It might seem that the extra information produ
ed by these systems wouldresult in in
reased patient dose. The results presented indi
ate that this is not true. Thenoise in the 
onventional images produ
ed from the energy sele
tive information 
an bemade equal to that in a 
onventional system using the same total dose. Furthermore, thesignal to noise ratio for a medi
ally important 
lass of imaging tasks will be shown tobe better than (or at worst equal to) the signal to noise ratio for a 
onventional systemperforming the same task.The information produ
ed by energy sele
tive systems 
an lead to improved medi
aldiagnoses. The results presented in these papers form a sound theoreti
al basis forextra
ting the energy sele
tive information as well as a framework for developing newte
hniques for usefully presenting it to the user.
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Figure 1: Ve
tor spa
e representation of simple materials. Part (a) shows the basis set
oe�
ients for a pure material 
omposed on one substan
e. Part (b) shows theline integrals. These lie along a line with slope a2/a1 and length proportional tothe obje
t thi
kness, L. Part (
) shows an obje
t 
omposed of three materials,resulting in three points in (a1, a2) spa
e. The total ve
tor A in Part (d) is thesum of three ve
tors from ea
h of the three materials.2 Te
hniques for Information Extra
tionThe data produ
ed dire
tly by energy sele
tive X-ray systems are images of the basisset 
oe�
ients (in a 
omputed tomography system) or their line integrals (in a singleproje
tion system). These images 
an be used dire
tly but we have developed methodsto extra
t information from the data and make it more useful for diagnosis. In thisse
tion we des
ribe the physi
al bases for these te
hniques and show how the ve
torspa
e des
ription 
an be used to understand them and form the basis for developing newones.2.1 Ve
tor Spa
e Representation of Simple MaterialsIn order to understand the signal pro
essing te
hniques it is instru
tive to 
onsider theve
tor spa
e representation for simple types of materials.The simplest 
ase is an obje
t 
omposed of a single 
ompound or a mixture of �xedproportions with parti
les smaller than the resolution of the system. In this 
ase the basisset 
oe�
ients are �xed and the material 
an be represented as a single point (a1, a2) ina two dimensional plot as in Figure 1a. The line integrals of the basis set 
oe�
ients willbe
Ai = aiL (i = 1, 2) (1)3



where L is the thi
kness of the material along the path of the X-ray beam. Thus the twodimensional representation of the line integrals in this 
ase will be a straight line throughthe origin with slope s,
s =

a2
a1

(2)and length proportional to the thi
kness as shown in Figure 1b.Any real obje
t will be 
omposed of more than one material. The basis set 
oe�
ientsfor this 
ase will be a set of points on the two dimensional representation, one for ea
htype of material as shown in Figure 1
. The line integrals for this 
ase are
Ai =

∫

ai(x, y, z)dl (i = 1, 2) (3)The total ve
tor in the two dimensional representation is the ve
tor sum of the 
ontri-butions due to the individual materials, Figure 1d.2.2 Synthesized Monoenergeti
 ImagesUsing the models developed in the previous se
tion, signal pro
essing te
hniques 
an bedevised to extra
t medi
ally useful information. Perhaps the simplest form of pro
essingis to form images representing the same physi
al quantities imaged in 
onventional sys-tems but at an adjustable display energy, Ed. In CT, we 
an form images of the linearattenuation 
oe�
ient, µ(Ed), while in single proje
tion systems we 
an form images ofthe line integral
L(Ed) =

∫

µ(x, y, z;Ed)dl. (4)These images have physi
al 
hara
teristi
s similar to those of 
onventional systems butthe display energy is not determined by the physi
al 
hara
teristi
s of the system butis a parameter under our 
ontrol. These images represent a single energy so they are
alled synthesized monoenergeti
 images. Sin
e the basis fun
tions are known a-priori,any desired display energy 
an be used as Ed so the 
onventional image is a subset ofthe energy sele
tive data and an energy sele
tive system extra
ts more information thana 
onventional system.In CT, the 
al
ulation of synthesized monoenergeti
 images is based on the fundamen-tal ve
tor spa
e representation
µ(E) = a1f1(E) + a2f2(E). (5)In an energy sele
tive CT system, where (a1, a2) are determined at points in the obje
t
ross se
tion, a display image 
an be 
al
ulated by 
arrying out the mathemati
al op-eration indi
ated in equation (5) at every point in the image using the basis fun
tionsevaluated at the display energy f(Ed), (f2(Ed). Note that the energy sele
tive CT imageis not subje
t to beam hardening artifa
ts (Alvarez and Seppi 1979[3℄).Analogous results 
an be obtained for the line integral of the attenuation 
oe�
ient

L(E) in equation (4), whi
h 
an be expressed in terms of the line integrals of the basisset 
oe�
ients Ai in equation (3) as
L(Ed) = A1f1(Ed) +A2f2(Ed). (6)4



The synthesized monoenergeti
 image has a useful ve
tor interpretation. The fun-damental de
omposition, equation (5), 
an be 
onsidered a dot produ
t between twove
tors. One, with 
omponents (a1, a2), depends on the material 
hara
teristi
s whilethe other, with 
omponents f1(Ed), f2(Ed) depends only on the 
hosen energy. The op-eration of 
al
ulating a 
onventional image from the energy sele
tive information is thenequivalent to proje
ting the ve
tor representing the basis set 
oe�
ients onto a ve
torrepresenting the values of the basis fun
tions at the display energy and then adjustingthe s
ale.2.3 Sele
tive Material ImagesSele
tive material imaging relies on the observation, dis
ussed in the �rst part of thisse
tion, that the ve
tor representation for a given material always lies along a singleline. If a generalized proje
tion is formed perpendi
ular to this line at every point in theimage, then variations in that material will not 
ontribute to the resultant image. It will,e�e
tively, have been 
an
eled.Suppose that in a single proje
tion system the obje
t 
onsists of a feature of interestplus a 
onstant ba
kground. Then, as shown in �gures 4a and 4b, the total ve
torwill 
onsist of a 
onstant ve
tor Ab plus a variable ve
tor Af . Making a generalizedproje
tion at an angle φb perpendi
ular to Ab, will 
an
el the ba
kground material whilea generalized proje
tion at an angle φf perpendi
ular to Af , will 
an
el the feature.If the obje
t 
onsists of a feature of interest 
ompletely surrounded by a uniformba
kground the results are similar. This 
ase 
an be transformed to the previous 
ase byde�ning an e�e
tive material with basis set 
oe�
ients equal to the di�eren
e betweenthe feature 
oe�
ients and the ba
kground 
oe�
ients (Lehmann 1982[4℄):
ad = af − ab. (7)By forming a generalized proje
tion perpendi
ular to the line integrals of the e�e
tivematerial ad, the embedded material will be 
an
eled. This situation is shown in �gures 4
and 4d. Note that in this 
ase the 
an
ellation angle depends on the basis set 
oe�
ientsof both materials. Thus it depends not only on their ratio but on their magnitude.2.4 Generalized Proje
tion Signal Pro
essingThus far we have dis
ussed two uses of energy sele
tive data: synthesized monoener-geti
 imaging and sele
tive material 
an
ellation, Although these two uses produ
e verydi�erent appearing images, they are both generalized proje
tions of basis set data andtherefore are 
losely related.Lehmann (1982[4℄) shows that with the proper 
hoi
e of basis fun
tions there are twodisjoint regions of proje
tion angle. The �rst quadrant 
orresponds to synthesized mo-noenergeti
 images and the se
ond quadrant 
orresponds to sele
tive material removalimages. Proje
tion ve
tors within the third and fourth quadrants generate images whi
hare 
ontrast reversed from those in the �rst and se
ond quadrants, respe
tively, but 
on-tain no new information. Thus synthesized monoenergeti
 images and sele
tive material5




an
ellation images are the only types of images that 
an be 
al
ulated by a generalizedproje
tion.3 Noise Varian
e and Covarian
eThe measurements used by energy sele
tive systems are random quantities and the es-timation of the energy dependent information should be based on statisti
al te
hniques.Previous results (Alvarez and Ma
ovski 1976[1℄) derived a maximum likelihood estimatorfor the basis set 
oe�
ient line integrals that leads to a simple and intuitively appealingpro
edure: The estimator solves the deterministi
 equations relating the line integralsand the transmitted �ux using the a
tual measurements as an estimate of the �ux. Theprevious results also derived expressions for the varian
es of the line integral estimatesbased on the Cramer-Rao lower bound for maximum likelihood estimators. In this se
-tion, we derive these expressions using matrix methods. This derivation is useful in itsown right and also introdu
es notation that will be used in following se
tions. We alsoderive matrix expressions for the varian
e of a linear 
ombination of line integrals forlater use. Finally, we dis
uss the relationship of the noise to the x-ray imaging systemproperties.As dis
ussed in the �rst paper in this series, a dual energy system 
omputes theline integrals of the basis set 
oe�
ients from the �ux measurements with two di�erente�e
tive spe
tra. These are related by two integral equations
I1(A1, A2) =

∫

S1(E)exp[−A1f1(E)−A2f2(E)]dE (8)
I2(A1, A2) =

∫

S2(E)exp[−A1f1(E) −A2f2(E)]dE. (9)Introdu
ing logarithms in these equations approximately linearizes them, whi
h is 
on-venient for the analysis of noise where the deviations are relatively small. Equations (8and 9) are then expressible in matrix form as
L =







log(I1(A1, A2))

log(I2(A1, A2))






=







L1(A1, A2)

L2(A1, A2)






. (10)Expressing small deviations of L from a mean value using a Taylor's series

L(A0 + δA) ≈ L(A0) +
∂L

∂A
δA. (11)De�ning

M =
∂L

∂A
=









∂L1

∂A1

∂L1

∂A2

∂L2

∂A1

∂L2

∂A2









=







M11 M12

M21 M22






(12)
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we 
an express the linear terms in the Taylor's series expansion in equation ( 11) as
δL = L(A0 + δA) − L(A0) ≈ MδA. (13)The 
ovarian
e of L is, by de�nition

RL = cov(L) = Ex
[

(L− L)2
] (14)where Ex(·) is the mean value. For small deviations L ≈ L(A0) and A ≈ A0 so

RL ≈ Ex
[

(δL)(δL)T
]

and RA ≈ Ex
[

(δA)(δA)T
] (15)where T designates the matrix transpose operation. Solving equation (13) for δA,

δA = M−1δL (16)so the 
ovarian
e of A is
RA = Ex

[(

M−1δL
) (

δLTM−T
)]

. (17)where M−T =
(

M−1
)T . Sin
e the M matrix is deterministi
, we apply the expe
tationoperator only to the δL fa
tors and

RA = M−1RLM
−T . (18)We assume that the measurements are statisti
ally independent so

RL =







σ2
1 0

0 σ2
2






(19)where σ2

i = var(log(Ii)) i = 1, 2. The inverse matrix M−1 is
M−1 =

1

J







M22 −M12

−M21 M11






(20)where

J = M11M22 −M12M21. (21)Substituting into equation (18)
RA =

1

J2







M22 −M12

−M21 M11













σ2
1 0

0 σ2
2













M22 −M21

−M12 M11






. (22)
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Multiplying this out results in the expressions:
V ar(A1) =

M2
22σ

2
1 +M2

12σ
2
2

J2
(23)

V ar(A2) =
M2

21σ
2
1 +M2

11σ
2
2

J2
(24)

Cov(A1, A2) = −
M22M21σ

2
1 +M11M12σ

2
2

J2
(25)where σ2

i is the varian
e of the transmitted �ux with spe
trum Ii and
Mij =

∂Li

∂Aj
=

∂log(Ii)

∂Aj
i, j = 1, 2. (26)We 
an also express the 
ovarian
e matrix as

RA =
1

J2







M2
22σ

2
1 +M2

12σ
2
2 −

(

M22M21σ
2
1 +M11M12σ

2
2

)

−
(

M22M21σ
2
1 +M11M12σ

2
2

)

M2
21σ

2
1 +M2

11σ
2
2






. (27)3.1 Varian
e of a Linear CombinationA matrix expression for the varian
e of a linear 
ombination will be useful in later dis-
ussions. Suppose we form a linear 
ombination of line integrals

P = p1A1 + p2A2 = pTA , p =







p1

p2






. (28)Let δP = P − P̃ and δA = A− Ã so δP = pT δA. Then,

V ar(P ) = Ex
[

(δP )(δP )T
]

= Ex
[

(pT δA)(δAT p)
]

= pTRAp. (29)3.2 Relationship of Noise to Physi
al System PropertiesIn ea
h of the expressions for the noise varian
e and 
ovarian
e the denominator is thesquare of a determinant that gives the 
onditioning of the two simultaneous equationsthat must be solved for the line integrals. The termsMij 
an be interpreted to be averagevalues of the basis set fun
tions over the two spe
tra used to measure the data. Thismay be seen by using the expressions for the �ux I in equations (8 and 9),
Ii =

∫

Si(E)e−A1f1(E)−A2f2(E)dE i = 1, 2. (30)Thus Mij is
Mij =

∂log(Ii)

∂Aj
=

1

Ii

∂Ii
∂Aj

(31)8



Mij = −

∫

fj(E)S(E)e−A1f1(E)−A2f2(E)dE
∫

S(E)e−A1f1(E)−A2f2(E)dE
.Note that by equation (26), the Mij are negative. To simplify the subsequent dis
ussions,we will introdu
e new positive 
oe�
ients mij = −Mij . Noti
e that we 
an use the pos-itive 
oe�
ients in the noise equations (23, 24, and 25) without 
hanging them. Finally,the term in the denominator normalizes the transmitted spe
trum S(E)e−A1f1(E)−A2f2(E)so its integral is one. Thus mij is the average value of fj(E) over the spe
trum trans-mitted through the body in measurement i.The numerators of the expressions for the noise in equations (23 and 24) have termswhi
h be
ome smaller as the varian
e of the measurements be
ome smaller. Thus, thereare two fa
tors whi
h determine the overall noise. One is the 
onditioning of the equationsexpressed through the Ja
obian determinant in equation (21), whi
h is determined bythe e�e
tive energy of the two spe
tra used in the measurement. The other fa
tor is thenoise in the individual measurements.4 Noise Optimal Generalized Proje
tionsIn previous se
tions of this paper, generalized proje
tions for a synthesized monoenergeti
or for the 
an
ellation of a parti
ular material were des
ribed. While these proje
tionsmay produ
e the image with desirable properties for a parti
ular imaging task, they donot take noise into a

ount. Depending on the a-priori knowledge of the obje
t 
ompo-sition and the type of imaging task, parti
ular proje
tions may give better performan
efrom the point of view of noise. In this se
tion we dis
uss these noise optimal proje
tions.Two types will be des
ribed. The �rst type produ
es a synthesized monoenergeti
 imageat a display energy whi
h gives a minimum varian
e. The se
ond type is an optimalgeneralized proje
tion image whi
h maximizes the signal to noise ratio for the task ofdistinguishing a material from a ba
kground.In this se
tion we will be 
al
ulating optima of matrix expressions using matrix 
al
u-lus. Some useful formulas are shown in Table 14.1 Minimum Varian
e Synthesized Monoenergeti
 ImageFirst, we des
ribe how to 
ompute an optimal display energy Ed that minimizes thevarian
e of a synthesized monoenergeti
 image.Suppose the image is a linear 
ombination P = p1A1 + p2A2 = pTA where

p =







f1(Ed)

f2(Ed)






= p(Ed). (32)As dis
ussed previously in equation (29), the varian
e is

V ar(P ) = pTRAp. (33)9



Table 1: Matrix Cal
ulus Formulas[5℄ve
tor-s
alar derivative
∂Y
∂t =















∂y1
∂t...
∂yn
∂t















ve
tor-ve
tor derivative
∂f
∂x =















∂f1
∂x1

· · · ∂f1
∂xm... . . . ...

∂fn
∂x1

· · · ∂fn
∂xm













matrix-s
alar derivative
∂F
∂t =















∂F11

∂t · · · ∂F1m

∂t... . . . ...
∂Fn1

∂t · · · ∂Fnm

∂t
















hain rule
∂Z(Y (X))

∂X = ∂Z
∂Y

∂Y
∂X

Produ
t rule
∂(Y TZ)

∂X =
(

ZT
)

∂Y
∂X +

(

Y T
)

∂Z
∂X

derivative of quadrati
 form
∂(xTAx)

∂x = xT
(

A+AT
)
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So, applying the 
hain rule
∂V ar(P )

∂Ed
=

∂V ar(P )

∂p

∂p

∂Ed
. (34)Applying the rules for the derivative of a quadrati
 form and a ve
tor from Table 1 andnoting that RA is symmetri
 so RT

A = RA, ∂V ar(P )
∂p = 2pTRA and

∂V ar(P )

∂Ed
= 2pTRAp

′ (35)where
p′ =







∂f1
∂E

∂f2
∂E







E=Ed

. (36)As shown in Appendix A the optimal display energy is given impli
itly as the energysu
h that the basis fun
tions take on the following values:
p1 = f1(Edopt) =

m21σ
2
1 +m11σ

2
2

σ2
1 + σ2

2

(37)
p2 = f2(Edopt) =

m22σ
2
1 +m12σ

2
2

σ2
1 + σ2

2

(38)Physi
ally, these expressions may be interpreted as de�ning the optimal display energy asa suitably de�ned average energy over the two spe
tra used in the measurement pro
ess.This may be seen more 
learly for the 
ase of a 
ounting dete
tor. Here the noise varian
eis equal to the average �ux. Substituting in the equations for the optimal display energyyields (after some rearrangement):
f1(Edopt) =

m21I2 +m11I1
I1 + I2

(39)
f2(Edopt) =

m22I2 +m12I1
I1 + I2

(40)where I1and I2 are the average transmitted �uxes with the two measurement spe
tra.Re
all that the mij 
an be interpreted as the average value of fi over spe
trum i.The expressions for the optimal display energy must be regarded as an approximationsin
e there is no guarantee that a single value of Ed will satisfy both expressions inequation (37). However, 
omputer simulation shows that these expressions are very
lose to the a
tual optimal value (Alvarez and Seppi 1979[3℄). Furthermore, we show inAppendix A that the se
ond derivative is positive at the optimal energy so the varian
eat the optimal display energy is a minimum.The varian
e of the synthesized monoenergeti
 image at the optimal display energymay be 
al
ulated by substituting the optimal 
oe�
ients, equation (37), into equation(29).
V ar(P ) =

σ2
1σ

2
2

σ2
1 + σ2

2

(41)11
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Figure 2: Varian
e vs. display energy for measurement spe
tra separated by 2, 4, and 6Kev. The varian
e is normalized by dividing by the varian
e of a 
onventionalimage using the same total dose. Note that the minimum value is 1 for all thespe
tra. That is the dual energy and the 
onventional system have the samevarian
e. Note also that as the energy di�eren
e of the measurement spe
tragets smaller, the sensitivity of the results in
reases.The impli
ation of this result is 
learer if the varian
e for a 
ounting dete
tor system
σ2
i = 1

Ii
is substituted. Then

V ar(P ) =
1

I1 + I2
(42)This is the varian
e of the line integral for a single spe
trum with average �ux equal tothe sum of the �uxes in the two measurement spe
tra. The varian
e in equation (42)does not depend on the separation of the average energies, and hen
e the 
onditioning ofthe measurement pro
ess. This result 
an be used in 
omputed tomography to produ
ea beam hardening 
orre
ted synthesized monoenergeti
 image from two spe
tra that aretoo ill-
onditioned to produ
e low noise basis set 
oe�
ient images (Rutt and Fenster1980[6℄). The noise in the optimal image will be as small as for a well-
onditionedmeasurement set. However, as shown in Appendix A, the se
ond derivative, and hen
e therate of the 
hanges in the varian
e, at the optimal energy gets larger as the 
onditioninggets worse. Sin
e due to beam hardening the transmitted spe
trum will vary a
ross theobje
t, if the measurement set is too ill-
onditioned then it may not be possible to de�nea single optimal energy for the whole obje
t. This is illustrated in Figure 2, where thevarian
e vs. display energy is plotted for several 
ases with varying separation in averageenergy between the two spe
tra.
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4.2 Maximum Signal to Noise Ratio Proje
tionConsider the simple but widely appli
able 
ase of a feature of interest over a uniformba
kground. If the 
omposition of the feature is known a-priori then this information 
anbe used to form a generalized proje
tion image whi
h maximizes the signal to noise ratio(SNR). At �rst glan
e it may seem that the angle whi
h 
an
els the ba
kground materialwould be the optimum. However, this is not true. The optimal angle depends on thenoise properties and on the 
omposition of the feature of interest and of the ba
kground.In the next se
tion, we show the perhaps surprising result that the SNR of an energysele
tive system with an optimal proje
tion is greater than that of a 
onventional systemex
ept in degenerate situations su
h as the feature having the same 
omposition as theba
kground. Even in these degenerate situations, the SNR of the energy sele
tive systemis equal to that of the 
onventional system.The derivation of the proje
tion with optimal signal to noise ratio begins with a pre
isede�nition of signal to noise ratio. The signal to noise ratio for the imaging task des
ribedabove is the di�eren
e in the generalized proje
tion values of the ba
kground and theba
kground plus feature of interest divided by the standard deviation of the noise in thegeneralized proje
tion.
SNR =

∆P

σP
(43)where the signal

∆P = |Pb+f − Pb| (44)and the generalized proje
tion P is
P = p1A1 + p2A2 (45)

P = KTA. (46)with KT = [p1, p2] and A = [A1, A2]. In these equations b denotes a measurementthrough the ba
kground material while b+ f denotes a measurement through the ba
k-ground plus feature of interest, as shown in Figure 3 . Therefore, the signal ∆P =
KT (Ab+f −Ab) = KTD with D = Ab+f − Ab = [d1, d2]

T . Using the formula for thevarian
e of a linear 
ombination, equation (29), the signal to noise ratio (squared) is
SNR2 =

(∆P )2

V ar(P )
=

(KTD)2

KTRAK
(47)where the noise is assumed to be the same over the ba
kground and ba
kground plusfeature regions. That is the feature of interest is assumed to have low overall attenuation.The optimal proje
tion Kopt satis�es

∂(SNR)2

∂K
|Kopt = 0. (48)

13



P P+δP

background, b

feature, f

Figure 3: Imaging task used in de�nition of signal to noise ratio. The obje
t 
onsists ofa feature superimposed on a ba
kground.We show in Appendix B that setting the derivative equal to 0 yields two solutions. Oneis
K =







1

−d1/d2






, (49)whi
h generates the generalized proje
tion with zero SNR, 
learly not the solution de-sired. The se
ond solution

Kopt = R−1
A D. (50)gives the maximum signal to random noise ratio. Note that the result depends on thedi�eren
e ve
tor of the two materials and on the noise properties.The signal to noise ratio at the optimal proje
tion Kopt 
an be found by substitutingin equation (47). The result is

SNRopt =
DTR−1

A D
(

DTR−1
A D

)1/2
=

(

DTR−1
A D

)1/2 (51)
=

[

d21var(A2) + d22var(A1)− 2d1d2cov(A1, A2)

var(A1)var(A2)− cov2(A1, A2)

]1/2 (52)This optimal signal to noise ratio 
an also be expressed in terms of the original measure-ment varian
es, σ2
i i = 1, 2. By equation (18), RA = M−1RLM

−T . Using the generalresult from matrix theory that (ABC)−1 = C−1B−1A−1, R−1
A = MTR−1

L M so
SNRopt =

(

DTMTR−1
L MD

)1/2
. (53)
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Sin
e RL =







σ2
1 0

0 σ2
2






then R−1

L =









1
σ2

1

0

0 1
σ2

2









so subsituting in this equation
SNRopt =

[

1

σ2
1

(d1m11 + d2m12)
2 +

1

σ2
2

(d1m21 + d2m22)
2
]1/2

. (54)We may interpret this as two distin
t signal to noise ratios adding orthogonally as inde-pendent quantities. Ea
h is the partial SNR attributable to a measurement. This resultwill be used in the next se
tion where we 
ompare the signal to noise ratio of 
onventionaland energy sele
tive systems.5 Comparison of Noise in Conventional and EnergySele
tive SystemsSin
e energy sele
tive systems extra
t more information than 
onventional systems, itmight seem that they require higher dose. In fa
t, the opposite is true. As shown inthis se
tion, energy sele
tive systems extra
t more information for the same dose than
onventional systems. Care must be exer
ised in 
omparing the two types of systemssin
e they produ
e physi
ally di�erent types of information. Two measures of noise willbe dis
ussed, noise varian
e and signal to noise ratio. The noise varian
e will be 
omparedin synthesized monoenergeti
 images while the signal to noise ratios will be 
omparedfor systems performing the same imaging task, the dete
tion of a small feature overlyinga uniform ba
kground.In order to assure the same dose, we will assume that the energy sele
tive systemuses the same spe
trum as the 
onventional system. This is shown in Figure 4. The
onventional system uses the 
omplete spe
trum shown in Part (a). The dual energysystem 
reates the low and high energy spe
tra (Parts (b) and (
) ) using a threshold soall photons with energy below the threshold are in the low energy spe
trum and thoseabove the threshold are in the other. With this te
hnique, we 
an always 
reate a dualenergy system with exa
tly the same dose as a 
onventional system.5.1 Comparison of Noise Varian
eThe 
omparison from the point of view of noise varian
e is quite simple. As dis
ussed inthe se
tion on optimal proje
tions, the optimal synthesized monoenergeti
 single proje
-tion image in a system with Poisson distributed noise has a varian
e equal to
var(P ) =

1

I1 + I2
(55)This is the varian
e of a 
onventional system using the same total �ux as the sumof the �ux in both measurements used in an energy sele
tive system. Sin
e, by ourassumption, the sum of the energy sele
tive spe
tra is the 
onventional spe
trum, there is15
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X−ray energy (keV)Figure 4: X-ray spe
tra used for the 
omparison of 
onventional and dual energy sys-tems. As dis
ussed in the test, by using these spe
tra, we guarantee that both
onventional and dual energy systems have the same dose.
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no in
rease in noise 
aused by 
arrying out the de
omposition pro
ess and then formingthe linear 
ombination of a synthesized monoenergeti
 image. But, by 
arrying outthe de
omposition pro
ess, the basis set 
oe�
ient line integrals are available for signalpro
essing su
h as material 
an
ellation. Thus, from the point of view of varian
e, theenergy sele
tive system extra
ts more information for the same dose as a 
onventionalsystem.5.2 Comparison of Signal to Noise RatioThe 
omparison from the point of view of signal to noise ratio is more 
omplex. In orderto 
arry it out, a suitable imaging task must be found (so that signal 
an be de�ned)and expressions for the signal to noise ratio of energy sele
tive and 
onventional systemsmust be derived.The imaging task is the same as dis
ussed in the previous se
tion on optimal signalto noise ratio: distinguish between a region 
ontaining only ba
kground material andanother region 
ontaining ba
kground plus a small feature of interest. Figure 3 illustratesthe geometry. For the 
omparison to be valid, both systems should have the same X-rayte
hnique fa
tors. This will be assured by assuming that the 
onventional and dual energyspe
tra are as shown in Figure 4. The only di�eren
e between the 
onventional and thedual energy systems will be in the pro
essing of the data. The 
onventional system simplysums the measurements and then forms the logarithm. The energy sele
tive system usesthe two measurements to 
al
ulate the line integrals of the basis set 
oe�
ients and thenforms the optimal proje
tion dis
ussed in the previous se
tion,There are then two sets of measurements: (I1, I2)b and (I1, I2)b+f where Ii is thetransmitted �ux with spe
trum i and b denotes a measurement only through the ba
k-ground material while b+f denotes a measurement through the ba
kground plus feature.The signal to noise ratio for the energy sele
tive system was previously derived as equa-tion (54). What remains is to derive the signal to noise ratio for a 
onventional systemperforming the same task.We will assume that the 
onventional image 
onsists of the logarithm of the sum ofthe transmitted �uxes with the two spe
tra. That is,
L = log(I1 + I2). (56)The signal for the 
onventional image is the di�eren
e of this quantity between regions
ontaining ba
kground plus feature and regions 
ontaining only ba
kground:

∆L = log(I1 + I2)b+f − log(I1 + I2)b (57)In terms of the measurement spe
tra, the �rst term in the equation for the 
onventionalsignal is:
log(I1 + I2)b+f =

∫

[S1(E) + S2(E)] exp [−A1,b+ff1(E) −A2,b+ff2(E)] dE (58)with a similar expression for (I1 + I2)b. Using the de�nitions of the previous se
tion,
Ai,b+f = Ai,b + di i = 1, 2 (59)17



where, by assumption, d1 and d2 are small quantities. As shown in Appendix C, thesignal to noise ratio of a 
onventional system is
SNRconventional =

|(d1m11 + d2m12)I1 + (d1m21 + d2m22)I2|

(I1 + I2)1/2
(60)Comparing this result with that in equation (54) for the optimal signal to noise ratioof an energy sele
tive system shows that

SNR
onventional ≤ SNRenergy sele
tive (61)with equality if and only if
(d1m11 + d2m12) = (d1m21 + d2m22) (62)The mij are for the spe
tra transmitted through the ba
kground region and they areassumed to be the same for the spe
tra transmitted through the ba
kground plus featureregion sin
e the feature has low attenuation.The 
ondition for equal signal to noise ratio has an interesting physi
al interpretation.Using the average basis fun
tion interpretation of the mij , the 
ondition states thatthe di�eren
e of the line integral ve
tors (between the ba
kground plus feature andba
kground only regions) must be equal for the two measurement spe
tra. Thus theenergy sele
tive and 
onventional systems will have the same signal to noise ratio onlyif the e�e
tive energies of the two measurement spe
tra are the same (and the systemgathers essentially no energy dependent information) or the feature has zero attenuation(and there is no signal for either system). Neither of these 
ases is important, so forpra
ti
ally useful situations, the energy sele
tive system always has a better signal tonoise ratio than the 
onventional system.6 Con
lusionsThe energy spe
trum of X-rays transmitted through the body 
ontains a great deal ofinformation. The information 
an be used to redu
e the e�e
ts of two important sour
esof noise in diagnosti
 imaging: overlying anatomi
al detail and quantum random noise,The e�e
ts of anatomi
al detail are redu
ed by using the energy sele
tive information toprodu
e images with the e�e
ts of spe
i�
 materials sele
tively 
an
eled. These imageshave less 
lutter and therefore enhan
e the 
onspi
uity of medi
ally important features.The energy sele
tive data 
an also be used to produ
e 
omputed tomography images inwhi
h the extraneous details of beam hardening artifa
ts have been removed.The e�e
ts of X-ray quantum noise are redu
ed by energy dependent te
hniques. Theenergy sele
tive systems extra
t more information for the same dose than 
onventionalsystems. They 
an form images with the same noise as 
onventional systems while at thesame time extra
ting the energy dependent information. Furthermore, they 
an dete
tsmall features with a signal to noise ratio better than 
onventional systems. From eitherthe point of view of anatomi
al noise or quantum noise, energy sele
tive systems extra
t18



information more e�
iently than 
onventional systems. This is due to the use of the a-priori knowledge of the physi
s of X-ray intera
tions with matter expressed in the ve
torspa
e des
ription of the energy dependen
e of these intera
tions. This des
ription issu�
iently a

urate for even the most rigorous quantitative diagnosti
 appli
ations yetit re�e
ts the fundamental simpli
ity of the physi
s and allows the information to beextra
ted with pra
ti
ally useful apparatus.Appendix A:The Optimal Synthesized Monoenergeti
 ImageIn this appendix the display energy for a synthesized monoenergeti
 image, de�ned im-pli
itly by equation (37), is shown to yield the minimum varian
e. An expression is alsoderived for the se
ond derivative at the optimal energy. The se
ond derivative be
omesin
reasingly large as the average energies of the two measurement spe
tra be
ome equal.Thus, the optimum be
omes in
reasingly 
riti
al and it be
omes harder to a
hieve theoptimal 
ondition at all points in an image.The display energy de�ned by equation (37 ) is shown to be optimal by substitutingthese expressions in the general formula for the derivative of varian
e with respe
t todisplay energy and showing that the derivative is equal to zero. Suppose that
c1 = f1(Ed) (63)and
c2 = f2(Ed) (64)are substituted in the general expression for noise varian
e of a linear 
ombination of thebasis set line integrals, equation (29). If this is then di�erentiated with respe
t to thedisplay energy Ed using equation (35) the result is

dV ar

dEd
=

2

J2

[

σ2
1(f1m22 − f2m21)(f

′

1m12 − f ′

2m21) + σ2
2(f1m12 − f2m11)(f

′

1m12 − f ′

2m21)
](65)Substituting the expressions for the optimal values of f1(Ed) and f2(Ed) yields

dV ar

dEd
=

−2σ2
1σ

2
2

J2(σ2
1 + σ2

2)

[

f ′

1(m22 −m12)− f ′

2(m21 −m11)
] (66)The expression in the bra
ket in equation (66) 
an be further simpli�ed by using thede�nition of mij from equation (26)

mij =
∂log(Ii)

∂Aj
=

1

Ii

∂Ii
∂Aj

= −

∫

fj(E)Si(E)e−f1(E)A1−f2(E)A2dE
∫

Si(E)e−f1(E)A1−f2(E)A2dE
= −〈fj〉i (67)The bra
ket notation 〈f〉i should be interpreted as the average value of fun
tion f intransmitted spe
trum i. We 
an use the bra
ket notation to see that, for example,

m22 −m12 = 〈f2〉2 − 〈f2〉1 ≈ f2(E2)− f2(E1) ≈ (E2 − E1)f
′

2 (68)19



Similarly m21 − m11 ≈ (E2 − E1)f
′

1. Substituting these expressions in equation (66)results in
dV ar

dEd
=

−2σ2
1σ

2
2

J2(σ2
1 + σ2

2)

[

f ′

1f
′

2 − f ′

2f
′

1

]

(E2 − E1). (69)The term [f ′

1f
′

2 − f ′

2f
′

1] is identi
ally equal to 0 so the derivative is also equal to 0.Di�erentiating equation (66) again and evaluating at the optimal display energy yields
d2V ar

dE2
d

=
2σ2

1σ
2
2

J2(σ2
1 + σ2

2)

[

f ′′

1 f
′

2 − f ′′

2 f
′

1

]

(E2 − E1) +
2(σ2

1 + σ2
2)

(E2 − E1)2
.This value is positive, so the extremum is a minimum. As the measurement spe
trabe
ome more ill-
onditioned, then (E2 − E1)

2 →0 and the se
ond term be
omes large.Thus the radius of 
urvature at the minimum be
omes smaller and the varian
e 
hangesrapidly with the display energy so a small error will result in greatly in
reased noise.Appendix B: Optimal Signal to Noise Ratio GeneralizedProje
tionIn this Appendix, we derive the formula for the generalized proje
tion 
oe�
ients thatyield the maximum signal to noise ratio. As formulated in Se
tion 4.2, we want to solve
∂(SNR)2

∂K
|Kopt = 0 (70)where

SNR2 =
(KTD)2

KTRAK
. (71). Using the following results from Table 1

∂(KTD)2

∂K
= 2(KTD)

∂(KTD)

∂K
= 2(KTD)DT (72)

∂(KTRAK)

∂K
= KT (RT

A +RA) = 2KTRA (73)where the last step in equation (73) follows from the fa
t that RA is symmetri
 so
RA = RT

A. Finally, applying the quotient rule,
∂

∂x

(

f

g

)

=
g ∂f
∂x − f ∂g

∂x

g2
, (74)we 
an write

∂(SNR)2

∂K
=

(KTRAK)2(KTD)DT − (KTD)22KTRA

(KTRAK)2
. (75)
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Fa
toring the numerator
∂(SNR)2

∂K
= 2(KTD)

(KTRAK)DT − (KTD)(KTRA)

(KTRAK)2
= 0, (76)it is 
lear that one solution is (KTD) = 0, whi
h is equivalent to

K =







1

−d1/d2






. (77)Re
all that, by de�nition, D = [d1, d2]

T .We 
an show that the other solution is K = R−1
A D by substituting in the numeratorof equation (76). First note that, by the symmetry of RA,

KT = DTR−T
A = DTR−1

A . (78)Substituting the expression for K in the numerator of equation (76) shows that thenumerator and hen
e the derivative is equal to 0,
(KTRAK)DT −(KTD)(KTRA) = (DTR−1

A RAR
−1
A D)DT −(DTR−1

A D)(DTR−1
A RA) = 0.(79)Substituting the optimal K in the expression for the signal to noise ratio squared

SNR2
opt =

(KTD)2

KTRAK
=

(

DTR−1
A D

)2

DTR−1
A RAR

−1
A D

= DTR−1
A D. (80)Appendix C: Signal to Noise Ratio in a ConventionalImaging SystemIn this Appendix, an expression is derived for the signal to noise ratio of a 
onventionalimaging system in terms of the mij 
oe�
ients. The imaging task is as assumed inSe
tion 4.2.First, we need an expression for the signal, as de�ned in that se
tion. Substitutingequation (59) into equation (58) yields

(I1 + I2)(b+f) =

∫

S∗(E)e−d1f1(E)−d2f2(E)dE (81)where
S∗(E) = [S1(E) + S2(E)] e−A1,bf1(E)−A2,bf2(E). (82)Note that

(I1 + I2)b =

∫

S∗(E)dE. (83)
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Approximating the exponential in equation (81) for small values of its argument as
e−d1f1(E)−d2f2(E) ≈ 1− d1f1(E)− d2f2(E), (84)the equation be
omes

(I1 + I2)(b+f) ≈ (I1 + I2)b − d1

∫

S∗(E)f1(E)dE − d2

∫

S∗(E)f2(E)dE. (85)We need the logarithm of equation (85). Sin
e the di are assumed small, the logarithm
an be approximated as
log (I1 + I2)(b+f) ≈ log (I1 + I2)b − d1 〈f1(E)〉1+2 − d2 〈f2(E)〉1+2 (86)where 〈.〉1+2 denotes an average using spe
trum S∗(E) as a weighting fun
tion. Thesignal δL in a 
onventional system is thus 
losely approximated by

δL = log (I1 + I2)(b+f) − log (I1 + I2)b ≈ −d1 〈f1(E)〉1+2 − d2 〈f2(E)〉1+2 (87)Next, we need an expression for the noise. Assuming a Poisson distributed noise sour
efor simpli
ity, the varian
e is
V ar(L) =

1

I1 + I2
. (88)Substituting this in equation (87) the signal to noise ratio is

SNR =
∣

∣

∣d1 〈f1(E)〉1+2 + d2 〈f2(E)〉1+2

∣

∣

∣ (I1 + I2)
1/2 (89)This result must now be expressed in terms of the Mij 
oe�
ients. This 
an be doneby using the result stated in equation (26),

Mij = 〈fj(E)〉i . (90)Using the linearity of the averaging operation,
〈f1(E)〉1+2 =

M11I1 +M21I2
I1 + I2

(91)and
〈f2(E)〉1+2 =

M12I1 +M22I2
I1 + I2

. (92)After some rearrangement of terms, the signal to noise ratio of a 
onventional system is
SNR =

|(d1M11 + d2M12)I1 + (d1M21 + d2M22)I2|

(I1 + I2)
1/2

. (93)
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