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4 Noise Optimal Generalized Projetions 94.1 Minimum Variane Synthesized Monoenergeti Image . . . . . 94.2 Maximum Signal to Noise Ratio Projetion . . . . . . . . . . 135 Comparison of Noise in Conventional and Energy Seletive Systems 155.1 Comparison of Noise Variane . . . . . . . . . . . . . . . . . . 155.2 Comparison of Signal to Noise Ratio . . . . . . . . . . . . . . 176 Conlusions 18Referenes 221 IntrodutionThe �rst paper of this series (Alvarez 1983[2℄) presented a vetor spae method for repre-senting the energy dependene of X-ray attenuation and for extrating this informationfrom simple measurements. In this paper, we present tehniques that use this informationto derive medially useful images and study the noise in these images.One of the most important soures of diagnosti errors in radiologial imaging is extra-neous detail. There are two prinipal soures of this extraneous detail in medial images.The most ommonly noted is X-ray quantum noise and other random noise in the mea-surement apparatus. However, another equally important soure of noise is �lutter� dueto overlying anatomial features, whih an mask the diagnostially signi�ant indiia.Energy seletive methods an be used to signi�antly redue the e�ets of both types ofnoise.In the �rst part of this paper, we desribe tehniques that an remove the e�et ofa material of a given omposition from the image. This type of proessing is uniqueto energy seletive radiography and is e�etive in removing anatomial lutter fromimages. It an be used, for example, to produe hest radiographs with either bone orsoft tissue removed. It is also useful in omputed tomography for produing data thatare independent of the e�ets of a partiular material.In the seond half of the paper, we disuss the e�et of noise in energy seletivesystems. It might seem that the extra information produed by these systems wouldresult in inreased patient dose. The results presented indiate that this is not true. Thenoise in the onventional images produed from the energy seletive information an bemade equal to that in a onventional system using the same total dose. Furthermore, thesignal to noise ratio for a medially important lass of imaging tasks will be shown tobe better than (or at worst equal to) the signal to noise ratio for a onventional systemperforming the same task.The information produed by energy seletive systems an lead to improved medialdiagnoses. The results presented in these papers form a sound theoretial basis forextrating the energy seletive information as well as a framework for developing newtehniques for usefully presenting it to the user.
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Figure 1: Vetor spae representation of simple materials. Part (a) shows the basis setoe�ients for a pure material omposed on one substane. Part (b) shows theline integrals. These lie along a line with slope a2/a1 and length proportional tothe objet thikness, L. Part () shows an objet omposed of three materials,resulting in three points in (a1, a2) spae. The total vetor A in Part (d) is thesum of three vetors from eah of the three materials.2 Tehniques for Information ExtrationThe data produed diretly by energy seletive X-ray systems are images of the basisset oe�ients (in a omputed tomography system) or their line integrals (in a singleprojetion system). These images an be used diretly but we have developed methodsto extrat information from the data and make it more useful for diagnosis. In thissetion we desribe the physial bases for these tehniques and show how the vetorspae desription an be used to understand them and form the basis for developing newones.2.1 Vetor Spae Representation of Simple MaterialsIn order to understand the signal proessing tehniques it is instrutive to onsider thevetor spae representation for simple types of materials.The simplest ase is an objet omposed of a single ompound or a mixture of �xedproportions with partiles smaller than the resolution of the system. In this ase the basisset oe�ients are �xed and the material an be represented as a single point (a1, a2) ina two dimensional plot as in Figure 1a. The line integrals of the basis set oe�ients willbe
Ai = aiL (i = 1, 2) (1)3



where L is the thikness of the material along the path of the X-ray beam. Thus the twodimensional representation of the line integrals in this ase will be a straight line throughthe origin with slope s,
s =

a2
a1

(2)and length proportional to the thikness as shown in Figure 1b.Any real objet will be omposed of more than one material. The basis set oe�ientsfor this ase will be a set of points on the two dimensional representation, one for eahtype of material as shown in Figure 1. The line integrals for this ase are
Ai =

∫

ai(x, y, z)dl (i = 1, 2) (3)The total vetor in the two dimensional representation is the vetor sum of the ontri-butions due to the individual materials, Figure 1d.2.2 Synthesized Monoenergeti ImagesUsing the models developed in the previous setion, signal proessing tehniques an bedevised to extrat medially useful information. Perhaps the simplest form of proessingis to form images representing the same physial quantities imaged in onventional sys-tems but at an adjustable display energy, Ed. In CT, we an form images of the linearattenuation oe�ient, µ(Ed), while in single projetion systems we an form images ofthe line integral
L(Ed) =

∫

µ(x, y, z;Ed)dl. (4)These images have physial harateristis similar to those of onventional systems butthe display energy is not determined by the physial harateristis of the system butis a parameter under our ontrol. These images represent a single energy so they arealled synthesized monoenergeti images. Sine the basis funtions are known a-priori,any desired display energy an be used as Ed so the onventional image is a subset ofthe energy seletive data and an energy seletive system extrats more information thana onventional system.In CT, the alulation of synthesized monoenergeti images is based on the fundamen-tal vetor spae representation
µ(E) = a1f1(E) + a2f2(E). (5)In an energy seletive CT system, where (a1, a2) are determined at points in the objetross setion, a display image an be alulated by arrying out the mathematial op-eration indiated in equation (5) at every point in the image using the basis funtionsevaluated at the display energy f(Ed), (f2(Ed). Note that the energy seletive CT imageis not subjet to beam hardening artifats (Alvarez and Seppi 1979[3℄).Analogous results an be obtained for the line integral of the attenuation oe�ient

L(E) in equation (4), whih an be expressed in terms of the line integrals of the basisset oe�ients Ai in equation (3) as
L(Ed) = A1f1(Ed) +A2f2(Ed). (6)4



The synthesized monoenergeti image has a useful vetor interpretation. The fun-damental deomposition, equation (5), an be onsidered a dot produt between twovetors. One, with omponents (a1, a2), depends on the material harateristis whilethe other, with omponents f1(Ed), f2(Ed) depends only on the hosen energy. The op-eration of alulating a onventional image from the energy seletive information is thenequivalent to projeting the vetor representing the basis set oe�ients onto a vetorrepresenting the values of the basis funtions at the display energy and then adjustingthe sale.2.3 Seletive Material ImagesSeletive material imaging relies on the observation, disussed in the �rst part of thissetion, that the vetor representation for a given material always lies along a singleline. If a generalized projetion is formed perpendiular to this line at every point in theimage, then variations in that material will not ontribute to the resultant image. It will,e�etively, have been aneled.Suppose that in a single projetion system the objet onsists of a feature of interestplus a onstant bakground. Then, as shown in �gures 4a and 4b, the total vetorwill onsist of a onstant vetor Ab plus a variable vetor Af . Making a generalizedprojetion at an angle φb perpendiular to Ab, will anel the bakground material whilea generalized projetion at an angle φf perpendiular to Af , will anel the feature.If the objet onsists of a feature of interest ompletely surrounded by a uniformbakground the results are similar. This ase an be transformed to the previous ase byde�ning an e�etive material with basis set oe�ients equal to the di�erene betweenthe feature oe�ients and the bakground oe�ients (Lehmann 1982[4℄):
ad = af − ab. (7)By forming a generalized projetion perpendiular to the line integrals of the e�etivematerial ad, the embedded material will be aneled. This situation is shown in �gures 4and 4d. Note that in this ase the anellation angle depends on the basis set oe�ientsof both materials. Thus it depends not only on their ratio but on their magnitude.2.4 Generalized Projetion Signal ProessingThus far we have disussed two uses of energy seletive data: synthesized monoener-geti imaging and seletive material anellation, Although these two uses produe verydi�erent appearing images, they are both generalized projetions of basis set data andtherefore are losely related.Lehmann (1982[4℄) shows that with the proper hoie of basis funtions there are twodisjoint regions of projetion angle. The �rst quadrant orresponds to synthesized mo-noenergeti images and the seond quadrant orresponds to seletive material removalimages. Projetion vetors within the third and fourth quadrants generate images whihare ontrast reversed from those in the �rst and seond quadrants, respetively, but on-tain no new information. Thus synthesized monoenergeti images and seletive material5



anellation images are the only types of images that an be alulated by a generalizedprojetion.3 Noise Variane and CovarianeThe measurements used by energy seletive systems are random quantities and the es-timation of the energy dependent information should be based on statistial tehniques.Previous results (Alvarez and Maovski 1976[1℄) derived a maximum likelihood estimatorfor the basis set oe�ient line integrals that leads to a simple and intuitively appealingproedure: The estimator solves the deterministi equations relating the line integralsand the transmitted �ux using the atual measurements as an estimate of the �ux. Theprevious results also derived expressions for the varianes of the line integral estimatesbased on the Cramer-Rao lower bound for maximum likelihood estimators. In this se-tion, we derive these expressions using matrix methods. This derivation is useful in itsown right and also introdues notation that will be used in following setions. We alsoderive matrix expressions for the variane of a linear ombination of line integrals forlater use. Finally, we disuss the relationship of the noise to the x-ray imaging systemproperties.As disussed in the �rst paper in this series, a dual energy system omputes theline integrals of the basis set oe�ients from the �ux measurements with two di�erente�etive spetra. These are related by two integral equations
I1(A1, A2) =

∫

S1(E)exp[−A1f1(E)−A2f2(E)]dE (8)
I2(A1, A2) =

∫

S2(E)exp[−A1f1(E) −A2f2(E)]dE. (9)Introduing logarithms in these equations approximately linearizes them, whih is on-venient for the analysis of noise where the deviations are relatively small. Equations (8and 9) are then expressible in matrix form as
L =







log(I1(A1, A2))

log(I2(A1, A2))






=







L1(A1, A2)

L2(A1, A2)






. (10)Expressing small deviations of L from a mean value using a Taylor's series

L(A0 + δA) ≈ L(A0) +
∂L

∂A
δA. (11)De�ning

M =
∂L

∂A
=









∂L1

∂A1

∂L1

∂A2

∂L2

∂A1

∂L2

∂A2









=







M11 M12

M21 M22






(12)
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we an express the linear terms in the Taylor's series expansion in equation ( 11) as
δL = L(A0 + δA) − L(A0) ≈ MδA. (13)The ovariane of L is, by de�nition

RL = cov(L) = Ex
[

(L− L)2
] (14)where Ex(·) is the mean value. For small deviations L ≈ L(A0) and A ≈ A0 so

RL ≈ Ex
[

(δL)(δL)T
]

and RA ≈ Ex
[

(δA)(δA)T
] (15)where T designates the matrix transpose operation. Solving equation (13) for δA,

δA = M−1δL (16)so the ovariane of A is
RA = Ex

[(

M−1δL
) (

δLTM−T
)]

. (17)where M−T =
(

M−1
)T . Sine the M matrix is deterministi, we apply the expetationoperator only to the δL fators and

RA = M−1RLM
−T . (18)We assume that the measurements are statistially independent so

RL =







σ2
1 0

0 σ2
2






(19)where σ2

i = var(log(Ii)) i = 1, 2. The inverse matrix M−1 is
M−1 =

1

J







M22 −M12

−M21 M11






(20)where

J = M11M22 −M12M21. (21)Substituting into equation (18)
RA =

1

J2







M22 −M12

−M21 M11













σ2
1 0

0 σ2
2













M22 −M21

−M12 M11






. (22)

7



Multiplying this out results in the expressions:
V ar(A1) =

M2
22σ

2
1 +M2

12σ
2
2

J2
(23)

V ar(A2) =
M2

21σ
2
1 +M2

11σ
2
2

J2
(24)

Cov(A1, A2) = −
M22M21σ

2
1 +M11M12σ

2
2

J2
(25)where σ2

i is the variane of the transmitted �ux with spetrum Ii and
Mij =

∂Li

∂Aj
=

∂log(Ii)

∂Aj
i, j = 1, 2. (26)We an also express the ovariane matrix as

RA =
1

J2







M2
22σ

2
1 +M2

12σ
2
2 −

(

M22M21σ
2
1 +M11M12σ

2
2

)

−
(

M22M21σ
2
1 +M11M12σ

2
2

)

M2
21σ

2
1 +M2

11σ
2
2






. (27)3.1 Variane of a Linear CombinationA matrix expression for the variane of a linear ombination will be useful in later dis-ussions. Suppose we form a linear ombination of line integrals

P = p1A1 + p2A2 = pTA , p =







p1

p2






. (28)Let δP = P − P̃ and δA = A− Ã so δP = pT δA. Then,

V ar(P ) = Ex
[

(δP )(δP )T
]

= Ex
[

(pT δA)(δAT p)
]

= pTRAp. (29)3.2 Relationship of Noise to Physial System PropertiesIn eah of the expressions for the noise variane and ovariane the denominator is thesquare of a determinant that gives the onditioning of the two simultaneous equationsthat must be solved for the line integrals. The termsMij an be interpreted to be averagevalues of the basis set funtions over the two spetra used to measure the data. Thismay be seen by using the expressions for the �ux I in equations (8 and 9),
Ii =

∫

Si(E)e−A1f1(E)−A2f2(E)dE i = 1, 2. (30)Thus Mij is
Mij =

∂log(Ii)

∂Aj
=

1

Ii

∂Ii
∂Aj

(31)8



Mij = −

∫

fj(E)S(E)e−A1f1(E)−A2f2(E)dE
∫

S(E)e−A1f1(E)−A2f2(E)dE
.Note that by equation (26), the Mij are negative. To simplify the subsequent disussions,we will introdue new positive oe�ients mij = −Mij . Notie that we an use the pos-itive oe�ients in the noise equations (23, 24, and 25) without hanging them. Finally,the term in the denominator normalizes the transmitted spetrum S(E)e−A1f1(E)−A2f2(E)so its integral is one. Thus mij is the average value of fj(E) over the spetrum trans-mitted through the body in measurement i.The numerators of the expressions for the noise in equations (23 and 24) have termswhih beome smaller as the variane of the measurements beome smaller. Thus, thereare two fators whih determine the overall noise. One is the onditioning of the equationsexpressed through the Jaobian determinant in equation (21), whih is determined bythe e�etive energy of the two spetra used in the measurement. The other fator is thenoise in the individual measurements.4 Noise Optimal Generalized ProjetionsIn previous setions of this paper, generalized projetions for a synthesized monoenergetior for the anellation of a partiular material were desribed. While these projetionsmay produe the image with desirable properties for a partiular imaging task, they donot take noise into aount. Depending on the a-priori knowledge of the objet ompo-sition and the type of imaging task, partiular projetions may give better performanefrom the point of view of noise. In this setion we disuss these noise optimal projetions.Two types will be desribed. The �rst type produes a synthesized monoenergeti imageat a display energy whih gives a minimum variane. The seond type is an optimalgeneralized projetion image whih maximizes the signal to noise ratio for the task ofdistinguishing a material from a bakground.In this setion we will be alulating optima of matrix expressions using matrix alu-lus. Some useful formulas are shown in Table 14.1 Minimum Variane Synthesized Monoenergeti ImageFirst, we desribe how to ompute an optimal display energy Ed that minimizes thevariane of a synthesized monoenergeti image.Suppose the image is a linear ombination P = p1A1 + p2A2 = pTA where

p =







f1(Ed)

f2(Ed)






= p(Ed). (32)As disussed previously in equation (29), the variane is

V ar(P ) = pTRAp. (33)9



Table 1: Matrix Calulus Formulas[5℄vetor-salar derivative
∂Y
∂t =















∂y1
∂t...
∂yn
∂t















vetor-vetor derivative
∂f
∂x =















∂f1
∂x1

· · · ∂f1
∂xm... . . . ...

∂fn
∂x1

· · · ∂fn
∂xm













matrix-salar derivative
∂F
∂t =















∂F11

∂t · · · ∂F1m

∂t... . . . ...
∂Fn1

∂t · · · ∂Fnm

∂t















hain rule
∂Z(Y (X))

∂X = ∂Z
∂Y

∂Y
∂X

Produt rule
∂(Y TZ)

∂X =
(

ZT
)

∂Y
∂X +

(

Y T
)

∂Z
∂X

derivative of quadrati form
∂(xTAx)

∂x = xT
(

A+AT
)
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So, applying the hain rule
∂V ar(P )

∂Ed
=

∂V ar(P )

∂p

∂p

∂Ed
. (34)Applying the rules for the derivative of a quadrati form and a vetor from Table 1 andnoting that RA is symmetri so RT

A = RA, ∂V ar(P )
∂p = 2pTRA and

∂V ar(P )

∂Ed
= 2pTRAp

′ (35)where
p′ =







∂f1
∂E

∂f2
∂E







E=Ed

. (36)As shown in Appendix A the optimal display energy is given impliitly as the energysuh that the basis funtions take on the following values:
p1 = f1(Edopt) =

m21σ
2
1 +m11σ

2
2

σ2
1 + σ2

2

(37)
p2 = f2(Edopt) =

m22σ
2
1 +m12σ

2
2

σ2
1 + σ2

2

(38)Physially, these expressions may be interpreted as de�ning the optimal display energy asa suitably de�ned average energy over the two spetra used in the measurement proess.This may be seen more learly for the ase of a ounting detetor. Here the noise varianeis equal to the average �ux. Substituting in the equations for the optimal display energyyields (after some rearrangement):
f1(Edopt) =

m21I2 +m11I1
I1 + I2

(39)
f2(Edopt) =

m22I2 +m12I1
I1 + I2

(40)where I1and I2 are the average transmitted �uxes with the two measurement spetra.Reall that the mij an be interpreted as the average value of fi over spetrum i.The expressions for the optimal display energy must be regarded as an approximationsine there is no guarantee that a single value of Ed will satisfy both expressions inequation (37). However, omputer simulation shows that these expressions are verylose to the atual optimal value (Alvarez and Seppi 1979[3℄). Furthermore, we show inAppendix A that the seond derivative is positive at the optimal energy so the varianeat the optimal display energy is a minimum.The variane of the synthesized monoenergeti image at the optimal display energymay be alulated by substituting the optimal oe�ients, equation (37), into equation(29).
V ar(P ) =

σ2
1σ

2
2

σ2
1 + σ2

2

(41)11
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Figure 2: Variane vs. display energy for measurement spetra separated by 2, 4, and 6Kev. The variane is normalized by dividing by the variane of a onventionalimage using the same total dose. Note that the minimum value is 1 for all thespetra. That is the dual energy and the onventional system have the samevariane. Note also that as the energy di�erene of the measurement spetragets smaller, the sensitivity of the results inreases.The impliation of this result is learer if the variane for a ounting detetor system
σ2
i = 1

Ii
is substituted. Then

V ar(P ) =
1

I1 + I2
(42)This is the variane of the line integral for a single spetrum with average �ux equal tothe sum of the �uxes in the two measurement spetra. The variane in equation (42)does not depend on the separation of the average energies, and hene the onditioning ofthe measurement proess. This result an be used in omputed tomography to produea beam hardening orreted synthesized monoenergeti image from two spetra that aretoo ill-onditioned to produe low noise basis set oe�ient images (Rutt and Fenster1980[6℄). The noise in the optimal image will be as small as for a well-onditionedmeasurement set. However, as shown in Appendix A, the seond derivative, and hene therate of the hanges in the variane, at the optimal energy gets larger as the onditioninggets worse. Sine due to beam hardening the transmitted spetrum will vary aross theobjet, if the measurement set is too ill-onditioned then it may not be possible to de�nea single optimal energy for the whole objet. This is illustrated in Figure 2, where thevariane vs. display energy is plotted for several ases with varying separation in averageenergy between the two spetra.
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4.2 Maximum Signal to Noise Ratio ProjetionConsider the simple but widely appliable ase of a feature of interest over a uniformbakground. If the omposition of the feature is known a-priori then this information anbe used to form a generalized projetion image whih maximizes the signal to noise ratio(SNR). At �rst glane it may seem that the angle whih anels the bakground materialwould be the optimum. However, this is not true. The optimal angle depends on thenoise properties and on the omposition of the feature of interest and of the bakground.In the next setion, we show the perhaps surprising result that the SNR of an energyseletive system with an optimal projetion is greater than that of a onventional systemexept in degenerate situations suh as the feature having the same omposition as thebakground. Even in these degenerate situations, the SNR of the energy seletive systemis equal to that of the onventional system.The derivation of the projetion with optimal signal to noise ratio begins with a preisede�nition of signal to noise ratio. The signal to noise ratio for the imaging task desribedabove is the di�erene in the generalized projetion values of the bakground and thebakground plus feature of interest divided by the standard deviation of the noise in thegeneralized projetion.
SNR =

∆P

σP
(43)where the signal

∆P = |Pb+f − Pb| (44)and the generalized projetion P is
P = p1A1 + p2A2 (45)

P = KTA. (46)with KT = [p1, p2] and A = [A1, A2]. In these equations b denotes a measurementthrough the bakground material while b+ f denotes a measurement through the bak-ground plus feature of interest, as shown in Figure 3 . Therefore, the signal ∆P =
KT (Ab+f −Ab) = KTD with D = Ab+f − Ab = [d1, d2]

T . Using the formula for thevariane of a linear ombination, equation (29), the signal to noise ratio (squared) is
SNR2 =

(∆P )2

V ar(P )
=

(KTD)2

KTRAK
(47)where the noise is assumed to be the same over the bakground and bakground plusfeature regions. That is the feature of interest is assumed to have low overall attenuation.The optimal projetion Kopt satis�es

∂(SNR)2

∂K
|Kopt = 0. (48)
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Figure 3: Imaging task used in de�nition of signal to noise ratio. The objet onsists ofa feature superimposed on a bakground.We show in Appendix B that setting the derivative equal to 0 yields two solutions. Oneis
K =







1

−d1/d2






, (49)whih generates the generalized projetion with zero SNR, learly not the solution de-sired. The seond solution

Kopt = R−1
A D. (50)gives the maximum signal to random noise ratio. Note that the result depends on thedi�erene vetor of the two materials and on the noise properties.The signal to noise ratio at the optimal projetion Kopt an be found by substitutingin equation (47). The result is

SNRopt =
DTR−1

A D
(

DTR−1
A D

)1/2
=

(

DTR−1
A D

)1/2 (51)
=

[

d21var(A2) + d22var(A1)− 2d1d2cov(A1, A2)

var(A1)var(A2)− cov2(A1, A2)

]1/2 (52)This optimal signal to noise ratio an also be expressed in terms of the original measure-ment varianes, σ2
i i = 1, 2. By equation (18), RA = M−1RLM

−T . Using the generalresult from matrix theory that (ABC)−1 = C−1B−1A−1, R−1
A = MTR−1

L M so
SNRopt =

(

DTMTR−1
L MD

)1/2
. (53)
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Sine RL =







σ2
1 0

0 σ2
2






then R−1

L =









1
σ2

1

0

0 1
σ2

2









so subsituting in this equation
SNRopt =

[

1

σ2
1

(d1m11 + d2m12)
2 +

1

σ2
2

(d1m21 + d2m22)
2
]1/2

. (54)We may interpret this as two distint signal to noise ratios adding orthogonally as inde-pendent quantities. Eah is the partial SNR attributable to a measurement. This resultwill be used in the next setion where we ompare the signal to noise ratio of onventionaland energy seletive systems.5 Comparison of Noise in Conventional and EnergySeletive SystemsSine energy seletive systems extrat more information than onventional systems, itmight seem that they require higher dose. In fat, the opposite is true. As shown inthis setion, energy seletive systems extrat more information for the same dose thanonventional systems. Care must be exerised in omparing the two types of systemssine they produe physially di�erent types of information. Two measures of noise willbe disussed, noise variane and signal to noise ratio. The noise variane will be omparedin synthesized monoenergeti images while the signal to noise ratios will be omparedfor systems performing the same imaging task, the detetion of a small feature overlyinga uniform bakground.In order to assure the same dose, we will assume that the energy seletive systemuses the same spetrum as the onventional system. This is shown in Figure 4. Theonventional system uses the omplete spetrum shown in Part (a). The dual energysystem reates the low and high energy spetra (Parts (b) and () ) using a threshold soall photons with energy below the threshold are in the low energy spetrum and thoseabove the threshold are in the other. With this tehnique, we an always reate a dualenergy system with exatly the same dose as a onventional system.5.1 Comparison of Noise VarianeThe omparison from the point of view of noise variane is quite simple. As disussed inthe setion on optimal projetions, the optimal synthesized monoenergeti single proje-tion image in a system with Poisson distributed noise has a variane equal to
var(P ) =

1

I1 + I2
(55)This is the variane of a onventional system using the same total �ux as the sumof the �ux in both measurements used in an energy seletive system. Sine, by ourassumption, the sum of the energy seletive spetra is the onventional spetrum, there is15



0 20 40 60 80 100

(a)

Conventional

0 20 40 60 80 100

S
pe

ct
ru

m

(b)

Low energy spectrum

0 20 40 60 80 100

(c)

High energy spectrum

X−ray energy (keV)Figure 4: X-ray spetra used for the omparison of onventional and dual energy sys-tems. As disussed in the test, by using these spetra, we guarantee that bothonventional and dual energy systems have the same dose.
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no inrease in noise aused by arrying out the deomposition proess and then formingthe linear ombination of a synthesized monoenergeti image. But, by arrying outthe deomposition proess, the basis set oe�ient line integrals are available for signalproessing suh as material anellation. Thus, from the point of view of variane, theenergy seletive system extrats more information for the same dose as a onventionalsystem.5.2 Comparison of Signal to Noise RatioThe omparison from the point of view of signal to noise ratio is more omplex. In orderto arry it out, a suitable imaging task must be found (so that signal an be de�ned)and expressions for the signal to noise ratio of energy seletive and onventional systemsmust be derived.The imaging task is the same as disussed in the previous setion on optimal signalto noise ratio: distinguish between a region ontaining only bakground material andanother region ontaining bakground plus a small feature of interest. Figure 3 illustratesthe geometry. For the omparison to be valid, both systems should have the same X-raytehnique fators. This will be assured by assuming that the onventional and dual energyspetra are as shown in Figure 4. The only di�erene between the onventional and thedual energy systems will be in the proessing of the data. The onventional system simplysums the measurements and then forms the logarithm. The energy seletive system usesthe two measurements to alulate the line integrals of the basis set oe�ients and thenforms the optimal projetion disussed in the previous setion,There are then two sets of measurements: (I1, I2)b and (I1, I2)b+f where Ii is thetransmitted �ux with spetrum i and b denotes a measurement only through the bak-ground material while b+f denotes a measurement through the bakground plus feature.The signal to noise ratio for the energy seletive system was previously derived as equa-tion (54). What remains is to derive the signal to noise ratio for a onventional systemperforming the same task.We will assume that the onventional image onsists of the logarithm of the sum ofthe transmitted �uxes with the two spetra. That is,
L = log(I1 + I2). (56)The signal for the onventional image is the di�erene of this quantity between regionsontaining bakground plus feature and regions ontaining only bakground:

∆L = log(I1 + I2)b+f − log(I1 + I2)b (57)In terms of the measurement spetra, the �rst term in the equation for the onventionalsignal is:
log(I1 + I2)b+f =

∫

[S1(E) + S2(E)] exp [−A1,b+ff1(E) −A2,b+ff2(E)] dE (58)with a similar expression for (I1 + I2)b. Using the de�nitions of the previous setion,
Ai,b+f = Ai,b + di i = 1, 2 (59)17



where, by assumption, d1 and d2 are small quantities. As shown in Appendix C, thesignal to noise ratio of a onventional system is
SNRconventional =

|(d1m11 + d2m12)I1 + (d1m21 + d2m22)I2|

(I1 + I2)1/2
(60)Comparing this result with that in equation (54) for the optimal signal to noise ratioof an energy seletive system shows that

SNRonventional ≤ SNRenergy seletive (61)with equality if and only if
(d1m11 + d2m12) = (d1m21 + d2m22) (62)The mij are for the spetra transmitted through the bakground region and they areassumed to be the same for the spetra transmitted through the bakground plus featureregion sine the feature has low attenuation.The ondition for equal signal to noise ratio has an interesting physial interpretation.Using the average basis funtion interpretation of the mij , the ondition states thatthe di�erene of the line integral vetors (between the bakground plus feature andbakground only regions) must be equal for the two measurement spetra. Thus theenergy seletive and onventional systems will have the same signal to noise ratio onlyif the e�etive energies of the two measurement spetra are the same (and the systemgathers essentially no energy dependent information) or the feature has zero attenuation(and there is no signal for either system). Neither of these ases is important, so forpratially useful situations, the energy seletive system always has a better signal tonoise ratio than the onventional system.6 ConlusionsThe energy spetrum of X-rays transmitted through the body ontains a great deal ofinformation. The information an be used to redue the e�ets of two important souresof noise in diagnosti imaging: overlying anatomial detail and quantum random noise,The e�ets of anatomial detail are redued by using the energy seletive information toprodue images with the e�ets of spei� materials seletively aneled. These imageshave less lutter and therefore enhane the onspiuity of medially important features.The energy seletive data an also be used to produe omputed tomography images inwhih the extraneous details of beam hardening artifats have been removed.The e�ets of X-ray quantum noise are redued by energy dependent tehniques. Theenergy seletive systems extrat more information for the same dose than onventionalsystems. They an form images with the same noise as onventional systems while at thesame time extrating the energy dependent information. Furthermore, they an detetsmall features with a signal to noise ratio better than onventional systems. From eitherthe point of view of anatomial noise or quantum noise, energy seletive systems extrat18



information more e�iently than onventional systems. This is due to the use of the a-priori knowledge of the physis of X-ray interations with matter expressed in the vetorspae desription of the energy dependene of these interations. This desription issu�iently aurate for even the most rigorous quantitative diagnosti appliations yetit re�ets the fundamental simpliity of the physis and allows the information to beextrated with pratially useful apparatus.Appendix A:The Optimal Synthesized Monoenergeti ImageIn this appendix the display energy for a synthesized monoenergeti image, de�ned im-pliitly by equation (37), is shown to yield the minimum variane. An expression is alsoderived for the seond derivative at the optimal energy. The seond derivative beomesinreasingly large as the average energies of the two measurement spetra beome equal.Thus, the optimum beomes inreasingly ritial and it beomes harder to ahieve theoptimal ondition at all points in an image.The display energy de�ned by equation (37 ) is shown to be optimal by substitutingthese expressions in the general formula for the derivative of variane with respet todisplay energy and showing that the derivative is equal to zero. Suppose that
c1 = f1(Ed) (63)and
c2 = f2(Ed) (64)are substituted in the general expression for noise variane of a linear ombination of thebasis set line integrals, equation (29). If this is then di�erentiated with respet to thedisplay energy Ed using equation (35) the result is

dV ar

dEd
=

2

J2

[

σ2
1(f1m22 − f2m21)(f

′

1m12 − f ′

2m21) + σ2
2(f1m12 − f2m11)(f

′

1m12 − f ′

2m21)
](65)Substituting the expressions for the optimal values of f1(Ed) and f2(Ed) yields

dV ar

dEd
=

−2σ2
1σ

2
2

J2(σ2
1 + σ2

2)

[

f ′

1(m22 −m12)− f ′

2(m21 −m11)
] (66)The expression in the braket in equation (66) an be further simpli�ed by using thede�nition of mij from equation (26)

mij =
∂log(Ii)

∂Aj
=

1

Ii

∂Ii
∂Aj

= −

∫

fj(E)Si(E)e−f1(E)A1−f2(E)A2dE
∫

Si(E)e−f1(E)A1−f2(E)A2dE
= −〈fj〉i (67)The braket notation 〈f〉i should be interpreted as the average value of funtion f intransmitted spetrum i. We an use the braket notation to see that, for example,

m22 −m12 = 〈f2〉2 − 〈f2〉1 ≈ f2(E2)− f2(E1) ≈ (E2 − E1)f
′

2 (68)19



Similarly m21 − m11 ≈ (E2 − E1)f
′

1. Substituting these expressions in equation (66)results in
dV ar

dEd
=

−2σ2
1σ

2
2

J2(σ2
1 + σ2

2)

[

f ′

1f
′

2 − f ′

2f
′

1

]

(E2 − E1). (69)The term [f ′

1f
′

2 − f ′

2f
′

1] is identially equal to 0 so the derivative is also equal to 0.Di�erentiating equation (66) again and evaluating at the optimal display energy yields
d2V ar

dE2
d

=
2σ2

1σ
2
2

J2(σ2
1 + σ2

2)

[

f ′′

1 f
′

2 − f ′′

2 f
′

1

]

(E2 − E1) +
2(σ2

1 + σ2
2)

(E2 − E1)2
.This value is positive, so the extremum is a minimum. As the measurement spetrabeome more ill-onditioned, then (E2 − E1)

2 →0 and the seond term beomes large.Thus the radius of urvature at the minimum beomes smaller and the variane hangesrapidly with the display energy so a small error will result in greatly inreased noise.Appendix B: Optimal Signal to Noise Ratio GeneralizedProjetionIn this Appendix, we derive the formula for the generalized projetion oe�ients thatyield the maximum signal to noise ratio. As formulated in Setion 4.2, we want to solve
∂(SNR)2

∂K
|Kopt = 0 (70)where

SNR2 =
(KTD)2

KTRAK
. (71). Using the following results from Table 1

∂(KTD)2

∂K
= 2(KTD)

∂(KTD)

∂K
= 2(KTD)DT (72)

∂(KTRAK)

∂K
= KT (RT

A +RA) = 2KTRA (73)where the last step in equation (73) follows from the fat that RA is symmetri so
RA = RT

A. Finally, applying the quotient rule,
∂

∂x

(

f

g

)

=
g ∂f
∂x − f ∂g

∂x

g2
, (74)we an write

∂(SNR)2

∂K
=

(KTRAK)2(KTD)DT − (KTD)22KTRA

(KTRAK)2
. (75)
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Fatoring the numerator
∂(SNR)2

∂K
= 2(KTD)

(KTRAK)DT − (KTD)(KTRA)

(KTRAK)2
= 0, (76)it is lear that one solution is (KTD) = 0, whih is equivalent to

K =







1

−d1/d2






. (77)Reall that, by de�nition, D = [d1, d2]

T .We an show that the other solution is K = R−1
A D by substituting in the numeratorof equation (76). First note that, by the symmetry of RA,

KT = DTR−T
A = DTR−1

A . (78)Substituting the expression for K in the numerator of equation (76) shows that thenumerator and hene the derivative is equal to 0,
(KTRAK)DT −(KTD)(KTRA) = (DTR−1

A RAR
−1
A D)DT −(DTR−1

A D)(DTR−1
A RA) = 0.(79)Substituting the optimal K in the expression for the signal to noise ratio squared

SNR2
opt =

(KTD)2

KTRAK
=

(

DTR−1
A D

)2

DTR−1
A RAR

−1
A D

= DTR−1
A D. (80)Appendix C: Signal to Noise Ratio in a ConventionalImaging SystemIn this Appendix, an expression is derived for the signal to noise ratio of a onventionalimaging system in terms of the mij oe�ients. The imaging task is as assumed inSetion 4.2.First, we need an expression for the signal, as de�ned in that setion. Substitutingequation (59) into equation (58) yields

(I1 + I2)(b+f) =

∫

S∗(E)e−d1f1(E)−d2f2(E)dE (81)where
S∗(E) = [S1(E) + S2(E)] e−A1,bf1(E)−A2,bf2(E). (82)Note that

(I1 + I2)b =

∫

S∗(E)dE. (83)
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Approximating the exponential in equation (81) for small values of its argument as
e−d1f1(E)−d2f2(E) ≈ 1− d1f1(E)− d2f2(E), (84)the equation beomes

(I1 + I2)(b+f) ≈ (I1 + I2)b − d1

∫

S∗(E)f1(E)dE − d2

∫

S∗(E)f2(E)dE. (85)We need the logarithm of equation (85). Sine the di are assumed small, the logarithman be approximated as
log (I1 + I2)(b+f) ≈ log (I1 + I2)b − d1 〈f1(E)〉1+2 − d2 〈f2(E)〉1+2 (86)where 〈.〉1+2 denotes an average using spetrum S∗(E) as a weighting funtion. Thesignal δL in a onventional system is thus losely approximated by

δL = log (I1 + I2)(b+f) − log (I1 + I2)b ≈ −d1 〈f1(E)〉1+2 − d2 〈f2(E)〉1+2 (87)Next, we need an expression for the noise. Assuming a Poisson distributed noise sourefor simpliity, the variane is
V ar(L) =

1

I1 + I2
. (88)Substituting this in equation (87) the signal to noise ratio is

SNR =
∣

∣

∣d1 〈f1(E)〉1+2 + d2 〈f2(E)〉1+2

∣

∣

∣ (I1 + I2)
1/2 (89)This result must now be expressed in terms of the Mij oe�ients. This an be doneby using the result stated in equation (26),

Mij = 〈fj(E)〉i . (90)Using the linearity of the averaging operation,
〈f1(E)〉1+2 =

M11I1 +M21I2
I1 + I2

(91)and
〈f2(E)〉1+2 =

M12I1 +M22I2
I1 + I2

. (92)After some rearrangement of terms, the signal to noise ratio of a onventional system is
SNR =

|(d1M11 + d2M12)I1 + (d1M21 + d2M22)I2|

(I1 + I2)
1/2

. (93)
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