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The information in the energy spectrum of X-ray photons transmitted
through the body can be extracted by using vector space techniques. This
information can be used to reduce errors due to the two important sources of
extraneous detail in X-ray images: overlying anatomical structures and ran-
dom noise. The effect of intervening anatomy can be reduced by techniques
that use the energy dependent information to selectively remove the effect of
materials of a given chemical composition from the image, The effect of ran-
dom noise is reduced by energy selective systems because they extract more
information for the same dose than conventional systems. Energy selective
systems can produce conventional images with the same noise variance as
conventional systems and they can detect small objects with a better signal
to noise ratio than conventional systems.
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1 Introduction

The first paper of this series (Alvarez 1983[2]) presented a vector space method for repre-
senting the energy dependence of X-ray attenuation and for extracting this information
from simple measurements. In this paper, we present techniques that use this information
to derive medically useful images and study the noise in these images.

One of the most important sources of diagnostic errors in radiological imaging is extra-
neous detail. There are two principal sources of this extraneous detail in medical images.
The most commonly noted is X-ray quantum noise and other random noise in the mea-
surement apparatus. However, another equally important source of noise is “clutter” due
to overlying anatomical features, which can mask the diagnostically significant indicia.
Energy selective methods can be used to significantly reduce the effects of both types of
noise.

In the first part of this paper, we describe techniques that can remove the effect of
a material of a given composition from the image. This type of processing is unique
to energy selective radiography and is effective in removing anatomical clutter from
images. It can be used, for example, to produce chest radiographs with either bone or
soft tissue removed. It is also useful in computed tomography for producing data that
are independent of the effects of a particular material.

In the second half of the paper, we discuss the effect of noise in energy selective
systems. It might seem that the extra information produced by these systems would
result in increased patient dose. The results presented indicate that this is not true. The
noise in the conventional images produced from the energy selective information can be
made equal to that in a conventional system using the same total dose. Furthermore, the
signal to noise ratio for a medically important class of imaging tasks will be shown to
be better than (or at worst equal to) the signal to noise ratio for a conventional system
performing the same task.

The information produced by energy selective systems can lead to improved medical
diagnoses. The results presented in these papers form a sound theoretical basis for
extracting the energy selective information as well as a framework for developing new
techniques for usefully presenting it to the user.
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Figure 1: Vector space representation of simple materials. Part (a) shows the basis set
coefficients for a pure material composed on one substance. Part (b) shows the
line integrals. These lie along a line with slope a2 /a; and length proportional to
the object thickness, L. Part (c) shows an object composed of three materials,
resulting in three points in (ag,as) space. The total vector A in Part (d) is the
sum of three vectors from each of the three materials.

2 Techniques for Information Extraction

The data produced directly by energy selective X-ray systems are images of the basis
set coefficients (in a computed tomography system) or their line integrals (in a single
projection system). These images can be used directly but we have developed methods
to extract information from the data and make it more useful for diagnosis. In this
section we describe the physical bases for these techniques and show how the vector
space description can be used to understand them and form the basis for developing new
ones.

2.1 Vector Space Representation of Simple Materials

In order to understand the signal processing techniques it is instructive to consider the
vector space representation for simple types of materials.

The simplest case is an object composed of a single compound or a mixture of fixed
proportions with particles smaller than the resolution of the system. In this case the basis
set coefficients are fixed and the material can be represented as a single point (a1, az) in
a two dimensional plot as in Figure la. The line integrals of the basis set coefficients will
be



where L is the thickness of the material along the path of the X-ray beam. Thus the two
dimensional representation of the line integrals in this case will be a straight line through
the origin with slope s, .
2
s=2 )
and length proportional to the thickness as shown in Figure 1b.
Any real object will be composed of more than one material. The basis set coefficients
for this case will be a set of points on the two dimensional representation, one for each

type of material as shown in Figure 1lc. The line integrals for this case are

AZ-:/aZ-(:I:,y,z)dl (i=1,2) (3)

The total vector in the two dimensional representation is the vector sum of the contri-
butions due to the individual materials, Figure 1d.

2.2 Synthesized Monoenergetic Images

Using the models developed in the previous section, signal processing techniques can be
devised to extract medically useful information. Perhaps the simplest form of processing
is to form images representing the same physical quantities imaged in conventional sys-
tems but at an adjustable display energy, F4. In CT, we can form images of the linear
attenuation coefficient, p(Fy), while in single projection systems we can form images of
the line integral

L(Ed) = [ oy, Eodl. (4)

These images have physical characteristics similar to those of conventional systems but
the display energy is not determined by the physical characteristics of the system but
is a parameter under our control. These images represent a single energy so they are
called synthesized monoenergetic images. Since the basis functions are known a-priori,
any desired display energy can be used as Eg so the conventional image is a subset of
the energy selective data and an energy selective system extracts more information than
a conventional system.

In CT, the calculation of synthesized monoenergetic images is based on the fundamen-
tal vector space representation

w(E) = a1 f1(E) + a2 fa( E). (5)

In an energy selective CT system, where (ai,as) are determined at points in the object
cross section, a display image can be calculated by carrying out the mathematical op-
eration indicated in equation (5) at every point in the image using the basis functions
evaluated at the display energy f(Ey), (f2(Eg4). Note that the energy selective CT image
is not subject to beam hardening artifacts (Alvarez and Seppi 1979[3]).

Analogous results can be obtained for the line integral of the attenuation coefficient
L(E) in equation (4), which can be expressed in terms of the line integrals of the basis
set coefficients A; in equation (3) as

L(Eq) = A1f1(Eq) + A2 f2(Eq). (6)



The synthesized monoenergetic image has a useful vector interpretation. The fun-
damental decomposition, equation (5), can be considered a dot product between two
vectors. One, with components (aj,ag), depends on the material characteristics while
the other, with components f1(Ey), fo(E4) depends only on the chosen energy. The op-
eration of calculating a conventional image from the energy selective information is then
equivalent to projecting the vector representing the basis set coefficients onto a vector
representing the values of the basis functions at the display energy and then adjusting
the scale.

2.3 Selective Material Images

Selective material imaging relies on the observation, discussed in the first part of this
section, that the vector representation for a given material always lies along a single
line. If a generalized projection is formed perpendicular to this line at every point in the
image, then variations in that material will not contribute to the resultant image. It will,
effectively, have been canceled.

Suppose that in a single projection system the object consists of a feature of interest
plus a constant background. Then, as shown in figures 4a and 4b, the total vector
will consist of a constant vector A; plus a variable vector Ay. Making a generalized
projection at an angle ¢ perpendicular to Ap, will cancel the background material while
a generalized projection at an angle ¢, perpendicular to Ay, will cancel the feature.

If the object consists of a feature of interest completely surrounded by a uniform
background the results are similar. This case can be transformed to the previous case by
defining an effective material with basis set coefficients equal to the difference between
the feature coefficients and the background coefficients (Lehmann 1982[4]):

ag = af — ayp. (7)

By forming a generalized projection perpendicular to the line integrals of the effective
material a4, the embedded material will be canceled. This situation is shown in figures 4c
and 4d. Note that in this case the cancellation angle depends on the basis set coefficients
of both materials. Thus it depends not only on their ratio but on their magnitude.

2.4 Generalized Projection Signal Processing

Thus far we have discussed two uses of energy selective data: synthesized monoener-
getic imaging and selective material cancellation, Although these two uses produce very
different appearing images, they are both generalized projections of basis set data and
therefore are closely related.

Lehmann (1982[4]) shows that with the proper choice of basis functions there are two
disjoint regions of projection angle. The first quadrant corresponds to synthesized mo-
noenergetic images and the second quadrant corresponds to selective material removal
images. Projection vectors within the third and fourth quadrants generate images which
are contrast reversed from those in the first and second quadrants, respectively, but con-
tain no new information. Thus synthesized monoenergetic images and selective material



cancellation images are the only types of images that can be calculated by a generalized
projection.

3 Noise Variance and Covariance

The measurements used by energy selective systems are random quantities and the es-
timation of the energy dependent information should be based on statistical techniques.
Previous results (Alvarez and Macovski 1976[1]) derived a maximum likelihood estimator
for the basis set coefficient line integrals that leads to a simple and intuitively appealing
procedure: The estimator solves the deterministic equations relating the line integrals
and the transmitted flux using the actual measurements as an estimate of the flux. The
previous results also derived expressions for the variances of the line integral estimates
based on the Cramer-Rao lower bound for maximum likelihood estimators. In this sec-
tion, we derive these expressions using matrix methods. This derivation is useful in its
own right and also introduces notation that will be used in following sections. We also
derive matrix expressions for the variance of a linear combination of line integrals for
later use. Finally, we discuss the relationship of the noise to the x-ray imaging system
properties.

As discussed in the first paper in this series, a dual energy system computes the
line integrals of the basis set coefficients from the flux measurements with two different
effective spectra. These are related by two integral equations

L1(A, Ay) = / Sy(B)exp[— A1 f1(E) — As fo(E)|dE (8)

Ip(Ay, Ay) = / So(B)eap[— A1 f1(E) — Asfo(E)]dE. (9)

Introducing logarithms in these equations approximately linearizes them, which is con-
venient for the analysis of noise where the deviations are relatively small. Equations (8
and 9) are then expressible in matrix form as

I = IOg(Il(Al,AQ)) _ Ll(Al,Ag) ' (10)

log(I2(A1, A2)) Ly(A1, Az)
Expressing small deviations of L from a mean value using a Taylor’s series

oL

L(Ag +6A) ~ L(Ap) + 8—A§A. (11)
Defining
oL oL
M_@L_ 9A, 04, | M1 Mo
=— = = (12)
0A
Oke oLz My Mo



we can express the linear terms in the Taylor’s series expansion in equation ( 11) as
0L = L(Ap+ 6A) — L(Ap) = MJA. (13)
The covariance of L is, by definition
R = cov(L) = Ex {(L - Z)Q} (14)
where Ez(-) is the mean value. For small deviations L ~ L(Ag) and A ~ Ag so
Ry~ Bz [OL)(OL)"] and Ra~ Bz [(04)(04)"] (15)
where T' designates the matrix transpose operation. Solving equation (13) for 0 A,
SA =ML (16)
so the covariance of A is

Ry =Ex|(M'oL) (s£"MT)]. (17)

where M~ = (M_l)T. Since the M matrix is deterministic, we apply the expectation
operator only to the L factors and

Ri=M'R M~ T, (18)

We assume that the measurements are statistically independent so

where 0 = var(log(I;)) i = 1,2. The inverse matrix M ! is

1 Moy —Mia

M~ == (20)
—Msy1 My
where
J = M1 May — Mo Mp;. (21)
Substituting into equation (18)
RA i % M22 —M12 U% 0 M22 _M21 (22)
—My My 0 o3 —Mya My



Multiplying this out results in the expressions:

2 2 2 2
Msyo1 + Miyo3

Var(Ay) = 7 (23)
M203 + M? 03
Var(Ag) = 2L 1J2 1192 (24)
M. M210'2 + ]\411]\4120’2

Cov(Ar, Ay) = ——22 L - 2 (25)

where o? is the variance of the transmitted flux with spectrum I; and

OL;  Olog(L;) . .
We can also express the covariance matrix as
R — i M2220'% + M%QO'% - (M22M210'% + M11M120'%) (27)
A — J2
— (MyyMa0% + My Myz03) M3 0% + Mf 03

3.1 Variance of a Linear Combination

A matrix expression for the variance of a linear combination will be useful in later dis-
cussions. Suppose we form a linear combination of line integrals

P=piA; +ppAy=pTA p= P (28)
P2

Let 6P =P — P and A = A — A so 6P = pT6A. Then,

Var(P) = Ex [(0P)(8P)"| = Ex [(p"64)(6A47p)| = p” Rap. (29)

3.2 Relationship of Noise to Physical System Properties

In each of the expressions for the noise variance and covariance the denominator is the
square of a determinant that gives the conditioning of the two simultaneous equations
that must be solved for the line integrals. The terms M;; can be interpreted to be average
values of the basis set functions over the two spectra used to measure the data. This
may be seen by using the expressions for the flux I in equations (8 and 9),

ja / Si(E)e~MhE)-A2f2(B) g — 1 9, (30)
Thus Mz‘j is

B 8AJ a Iz 8AJ

M;; (31)



I £ (E)S(E)e_Al h(E)-A2f2(E) g B
T [S(B)eAh(®B-ARE)E

Note that by equation (26), the M;; are negative. To simplify the subsequent discussions,
we will introduce new positive coefficients m;; = —M;;. Notice that we can use the pos-
itive coefficients in the noise equations (23, 24, and 25) without changing them. Finally,
the term in the denominator normalizes the transmitted spectrum S(E)e~A1/1(E)=A2f2(E)
so its integral is one. Thus m;; is the average value of f;(E) over the spectrum trans-
mitted through the body in measurement i.

The numerators of the expressions for the noise in equations (23 and 24) have terms
which become smaller as the variance of the measurements become smaller. Thus, there
are two factors which determine the overall noise. One is the conditioning of the equations
expressed through the Jacobian determinant in equation (21), which is determined by
the effective energy of the two spectra used in the measurement. The other factor is the
noise in the individual measurements.

Mij =

4 Noise Optimal Generalized Projections

In previous sections of this paper, generalized projections for a synthesized monoenergetic
or for the cancellation of a particular material were described. While these projections
may produce the image with desirable properties for a particular imaging task, they do
not take noise into account. Depending on the a-priori knowledge of the object compo-
sition and the type of imaging task, particular projections may give better performance
from the point of view of noise. In this section we discuss these noise optimal projections.
Two types will be described. The first type produces a synthesized monoenergetic image
at a display energy which gives a minimum variance. The second type is an optimal
generalized projection image which maximizes the signal to noise ratio for the task of
distinguishing a material from a background.

In this section we will be calculating optima of matrix expressions using matrix calcu-
lus. Some useful formulas are shown in Table 1

4.1 Minimum Variance Synthesized Monoenergetic Image

First, we describe how to compute an optimal display energy FE,; that minimizes the
variance of a synthesized monoenergetic image.
Suppose the image is a linear combination P = p1A; + paAs = pT A where

p= | B | _ By, (32)

J2(Eq)

As discussed previously in equation (29), the variance is

Var(P) = pT Ryp. (33)



Table 1: Matrix Calculus Formulas|5|

vector-scalar derivative

vector-vector derivative

Oy1 oh .. 9f1
ot ox1 O0Tm
Y _ of _
ot — or —
Oun Ofn ... Ofn
ot ox1 OTm
matrix-scalar derivative chain rule
AZ(Y (X)) _ 8z oYy
o .. 9Fim 0X = Y 0x
ot ot
OF _
ot
ot ot

Product rule

- () e+ ()

derivative of quadratic form

W:xT(A—I-AT)




So, applying the chain rule
oVar(P) OVar(P) Op

. 34
aEd ap aEd ( )
Applying the rules for the derivative of a quadratic form and a vector from Table 1 and
noting that R4 is symmetric so RY = R4, avg;(P) = 20" R4 and
oVar(P) T ,
——=2p'R 35
E, p" Rap (35)
where
) on
p=| 9 . (36)
Of2
9Lk J E—E,

As shown in Appendix A the optimal display energy is given implicitly as the energy
such that the basis functions take on the following values:

2 2
N mo1079 + mi105

p1 = f1(Ea,,,) =

37
0%4—0% ( )

2 2
_ M2207 + M1207

p2 = f2(Eq,,,) =

a% + ag (38)
Physically, these expressions may be interpreted as defining the optimal display energy as
a suitably defined average energy over the two spectra used in the measurement process.
This may be seen more clearly for the case of a counting detector. Here the noise variance
is equal to the average flux. Substituting in the equations for the optimal display energy
yields (after some rearrangement):

~ marly +mi

E = 39

fl( dopt) Il + 12 ( )
maaly +myaly

E = - 40

f2( dopt) Il “I—IQ ( )

where [1and I» are the average transmitted fluxes with the two measurement spectra.
Recall that the m;; can be interpreted as the average value of f; over spectrum i.

The expressions for the optimal display energy must be regarded as an approximation
since there is no guarantee that a single value of E; will satisfy both expressions in
equation (37). However, computer simulation shows that these expressions are very
close to the actual optimal value (Alvarez and Seppi 1979(3|). Furthermore, we show in
Appendix A that the second derivative is positive at the optimal energy so the variance
at the optimal display energy is a minimum.

The variance of the synthesized monoenergetic image at the optimal display energy
may be calculated by substituting the optimal coefficients, equation (37), into equation

(29).
0'20'2
Var(P) = —12_ 41
ar(P) a%—i—ag (41)
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Figure 2: Variance vs. display energy for measurement spectra separated by 2, 4, and 6
Kev. The variance is normalized by dividing by the variance of a conventional
image using the same total dose. Note that the minimum value is 1 for all the
spectra. That is the dual energy and the conventional system have the same
variance. Note also that as the energy difference of the measurement spectra
gets smaller, the sensitivity of the results increases.

The implication of this result is clearer if the variance for a counting detector system

2 1

o; = 1 Is substituted. Then

1
i 1+ 1
This is the variance of the line integral for a single spectrum with average flux equal to
the sum of the fluxes in the two measurement spectra. The variance in equation (42)
does not depend on the separation of the average energies, and hence the conditioning of
the measurement process. This result can be used in computed tomography to produce
a beam hardening corrected synthesized monoenergetic image from two spectra that are
too ill-conditioned to produce low noise basis set coefficient images (Rutt and Fenster
1980[6]). The noise in the optimal image will be as small as for a well-conditioned
measurement set. However, as shown in Appendix A, the second derivative, and hence the
rate of the changes in the variance, at the optimal energy gets larger as the conditioning
gets worse. Since due to beam hardening the transmitted spectrum will vary across the
object, if the measurement set is too ill-conditioned then it may not be possible to define
a single optimal energy for the whole object. This is illustrated in Figure 2, where the
variance vs. display energy is plotted for several cases with varying separation in average
energy between the two spectra.

Var(P) (42)

12



4.2 Maximum Signal to Noise Ratio Projection

Consider the simple but widely applicable case of a feature of interest over a uniform
background. If the composition of the feature is known a-prior: then this information can
be used to form a generalized projection image which maximizes the signal to noise ratio
(SNR). At first glance it may seem that the angle which cancels the background material
would be the optimum. However, this is not true. The optimal angle depends on the
noise properties and on the composition of the feature of interest and of the background.
In the next section, we show the perhaps surprising result that the SNR of an energy
selective system with an optimal projection is greater than that of a conventional system
except in degenerate situations such as the feature having the same composition as the
background. Even in these degenerate situations, the SNR of the energy selective system
is equal to that of the conventional system.

The derivation of the projection with optimal signal to noise ratio begins with a precise
definition of signal to noise ratio. The signal to noise ratio for the imaging task described
above is the difference in the generalized projection values of the background and the
background plus feature of interest divided by the standard deviation of the noise in the
generalized projection.

AP
SNR =21 (43)
op
where the signal
AP = [Py y — Byl (44)
and the generalized projection P is
P =pi1Ai + p2As (45)
P=KTA. (46)
with KT = [p1,p2] and A = [A;, As]. In these equations b denotes a measurement

through the background material while b + f denotes a measurement through the back-
ground plus feature of interest, as shown in Figure 3 . Therefore, the signal AP =
KT (Aprs— Ap) = KTD with D = Apyyp — A = [d1,dy]". Using the formula for the
variance of a linear combination, equation (29), the signal to noise ratio (squared) is

(AP)* _ (KTD)?

2 _ _
SNE = Var(P) KTRAK (47)

where the noise is assumed to be the same over the background and background plus
feature regions. That is the feature of interest is assumed to have low overall attenuation.
The optimal projection K,y satisfies

A(SNR)?

aK |Kopt = 0 (4:8)

13



feature, f

S/

P y P-+3P

background, b

Figure 3: Imaging task used in definition of signal to noise ratio. The object consists of
a feature superimposed on a background.

We show in Appendix B that setting the derivative equal to 0 yields two solutions. One
is

K= 1 , (49)

—di/dso

which generates the generalized projection with zero SNR, clearly not the solution de-
sired. The second solution
Kopt = Ry D. (50)

gives the maximum signal to random noise ratio. Note that the result depends on the
difference vector of the two materials and on the noise properties.

The signal to noise ratio at the optimal projection K,y can be found by substituting
in equation (47). The result is

SNRopt = (Dl;jj—f‘l;))m = (DTRAle)W (51)
A

B ld%var(Ag) + d3var(Ay) — 2dydacov( A, AQ)‘| 1/2 (52)

var(Ay)var(As) — cov?(Ay, Ag)

This optimal signal to noise ratio can also be expressed in terms of the original measure-
ment variances, 07 i = 1,2. By equation (18), R4 = MRy M~T. Using the general

%

result from matrix theory that (ABC)™' = C~'B~'A~' Ry' = MTR;'M so

1/2
SN Ry = (D" MTR;'MD) ” (53)

14



. 0'% 0 -1 g% 0 . . . . .
Since Ry, = then R}~ = 1 so subsituting in this equation
0 o3 0 %
2
1 ) 1 ) 1/2
SNR,p = ?(dlmu + domq2)” + ?(dlmm + domaa) . (54)
1 2

We may interpret this as two distinct signal to noise ratios adding orthogonally as inde-
pendent quantities. Each is the partial SNR attributable to a measurement. This result
will be used in the next section where we compare the signal to noise ratio of conventional
and energy selective systems.

5 Comparison of Noise in Conventional and Energy
Selective Systems

Since energy selective systems extract more information than conventional systems, it
might seem that they require higher dose. In fact, the opposite is true. As shown in
this section, energy selective systems extract more information for the same dose than
conventional systems. Care must be exercised in comparing the two types of systems
since they produce physically different types of information. Two measures of noise will
be discussed, noise variance and signal to noise ratio. The noise variance will be compared
in synthesized monoenergetic images while the signal to noise ratios will be compared
for systems performing the same imaging task, the detection of a small feature overlying
a uniform background.

In order to assure the same dose, we will assume that the energy selective system
uses the same spectrum as the conventional system. This is shown in Figure 4. The
conventional system uses the complete spectrum shown in Part (a). The dual energy
system creates the low and high energy spectra (Parts (b) and (c¢) ) using a threshold so
all photons with energy below the threshold are in the low energy spectrum and those
above the threshold are in the other. With this technique, we can always create a dual
energy system with exactly the same dose as a conventional system.

5.1 Comparison of Noise Variance

The comparison from the point of view of noise variance is quite simple. As discussed in
the section on optimal projections, the optimal synthesized monoenergetic single projec-
tion image in a system with Poisson distributed noise has a variance equal to

1

var(P) = 5

(55)

This is the variance of a conventional system using the same total flux as the sum
of the flux in both measurements used in an energy selective system. Since, by our
assumption, the sum of the energy selective spectra is the conventional spectrum, there is

15
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Figure 4: X-ray spectra used for the comparison of conventional and dual energy sys-

tems. As discussed in the test, by using these spectra, we guarantee that both
conventional and dual energy systems have the same dose.
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no increase in noise caused by carrying out the decomposition process and then forming
the linear combination of a synthesized monoenergetic image. But, by carrying out
the decomposition process, the basis set coefficient line integrals are available for signal
processing such as material cancellation. Thus, from the point of view of variance, the
energy selective system extracts more information for the same dose as a conventional
system.

5.2 Comparison of Signal to Noise Ratio

The comparison from the point of view of signal to noise ratio is more complex. In order
to carry it out, a suitable imaging task must be found (so that signal can be defined)
and expressions for the signal to noise ratio of energy selective and conventional systems
must be derived.

The imaging task is the same as discussed in the previous section on optimal signal
to noise ratio: distinguish between a region containing only background material and
another region containing background plus a small feature of interest. Figure 3 illustrates
the geometry. For the comparison to be valid, both systems should have the same X-ray
technique factors. This will be assured by assuming that the conventional and dual energy
spectra are as shown in Figure 4. The only difference between the conventional and the
dual energy systems will be in the processing of the data. The conventional system simply
sums the measurements and then forms the logarithm. The energy selective system uses
the two measurements to calculate the line integrals of the basis set coefficients and then
forms the optimal projection discussed in the previous section,

There are then two sets of measurements: ([1,1l2), and (I1,I2)p¢ where I; is the
transmitted flux with spectrum ¢ and b denotes a measurement only through the back-
ground material while b+ f denotes a measurement through the background plus feature.
The signal to noise ratio for the energy selective system was previously derived as equa-
tion (54). What remains is to derive the signal to noise ratio for a conventional system
performing the same task.

We will assume that the conventional image consists of the logarithm of the sum of
the transmitted fluxes with the two spectra. That is,

L =log(I; + I2). (56)

The signal for the conventional image is the difference of this quantity between regions
containing background plus feature and regions containing only background:

AL =log(I1 + I2)p4 ¢ — log(L1 + I2) (57)

In terms of the measurement spectra, the first term in the equation for the conventional
signal is:

log(I1 + I2)pyp = / [S1(E) + Sa(E)] exp [=A1prp f1(E) — Agprpfo(E) dE (58)

with a similar expression for (I + I2),. Using the definitions of the previous section,

Aiprp=Aip+d; 1=1,2 (59)

17



where, by assumption, d; and dy are small quantities. As shown in Appendix C, the
signal to noise ratio of a conventional system is

|(dima1 + dama2) I + (dimay + damag) o]

SNRcom;entional = (I + I )1/2
1 2

(60)

Comparing this result with that in equation (54) for the optimal signal to noise ratio
of an energy selective system shows that

SN Reonventional < SNV Renergy selective (61)
with equality if and only if
(dim11 + damiz) = (dima1 + damaz) (62)

The m;; are for the spectra transmitted through the background region and they are
assumed to be the same for the spectra transmitted through the background plus feature
region since the feature has low attenuation.

The condition for equal signal to noise ratio has an interesting physical interpretation.
Using the average basis function interpretation of the m;;, the condition states that
the difference of the line integral vectors (between the background plus feature and
background only regions) must be equal for the two measurement spectra. Thus the
energy selective and conventional systems will have the same signal to noise ratio only
if the effective energies of the two measurement spectra are the same (and the system
gathers essentially no energy dependent information) or the feature has zero attenuation
(and there is no signal for either system). Neither of these cases is important, so for
practically useful situations, the energy selective system always has a better signal to
noise ratio than the conventional system.

6 Conclusions

The energy spectrum of X-rays transmitted through the body contains a great deal of
information. The information can be used to reduce the effects of two important sources
of noise in diagnostic imaging: overlying anatomical detail and quantum random noise,
The effects of anatomical detail are reduced by using the energy selective information to
produce images with the effects of specific materials selectively canceled. These images
have less clutter and therefore enhance the conspicuity of medically important features.
The energy selective data can also be used to produce computed tomography images in
which the extraneous details of beam hardening artifacts have been removed.

The effects of X-ray quantum noise are reduced by energy dependent techniques. The
energy selective systems extract more information for the same dose than conventional
systems. They can form images with the same noise as conventional systems while at the
same time extracting the energy dependent information. Furthermore, they can detect
small features with a signal to noise ratio better than conventional systems. From either
the point of view of anatomical noise or quantum noise, energy selective systems extract
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information more efficiently than conventional systems. This is due to the use of the a-
priori knowledge of the physics of X-ray interactions with matter expressed in the vector
space description of the energy dependence of these interactions. This description is
sufficiently accurate for even the most rigorous quantitative diagnostic applications yet
it reflects the fundamental simplicity of the physics and allows the information to be
extracted with practically useful apparatus.

Appendix A:The Optimal Synthesized Monoenergetic Image

In this appendix the display energy for a synthesized monoenergetic image, defined im-
plicitly by equation (37), is shown to yield the minimum variance. An expression is also
derived for the second derivative at the optimal energy. The second derivative becomes
increasingly large as the average energies of the two measurement spectra become equal.
Thus, the optimum becomes increasingly critical and it becomes harder to achieve the
optimal condition at all points in an image.

The display energy defined by equation (37 ) is shown to be optimal by substituting
these expressions in the general formula for the derivative of variance with respect to
display energy and showing that the derivative is equal to zero. Suppose that

a = f1(Ea) (63)

and
c2 = fa(Eq) (64)

are substituted in the general expression for noise variance of a linear combination of the
basis set line integrals, equation (29). If this is then differentiated with respect to the
display energy Eg4 using equation (35) the result is

dVar 2
d—Ed = 72 {U%(flmm - f2m21)(f{m12 — faman) + U%(flmu - f2m11)(f{m12 - fémzl)}
(65)
Substituting the expressions for the optimal values of fi(Ey) and fo(Ey) yields
dVar  —20%03 p p
dBy ~ T2(0? + o3) [f1(maz — m12) — fa(ma1 — mu1)] (66)

The expression in the bracket in equation (66) can be further simplified by using the
definition of m;; from equation (26)

Olog(ly)  10L [ fi(B)Si(E)e BN -RE)Agp '
™S ToA, T LoA, S B)e RO Ry i

(67)

The bracket notation (f), should be interpreted as the average value of function f in

transmitted spectrum i. We can use the bracket notation to see that, for example,

mag — miz = (fa)y — (fo); = fa(E2) — foa(Er) = (B2 — Er) fy (68)
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Similarly mo; — my1; ~ (B2 — E1)f]. Substituting these expressions in equation (66)

results in . ) s
ar —20105 ' Vo
= — FEy — Eq). 69
dE, J2(02 + 02) [fif2 = faf1] (B2 1) (69)

The term [f1f5 — f5f1] is identically equal to 0 so the derivative is also equal to 0.
Differentiating equation (66) again and evaluating at the optimal display energy yields

d2Va/I" 20—%0-% I el 1 el
= —~ E,—E
dEZ — J2(0 +03) fife= f2fi] (B2 = Ev) +

2(0f + 03)
(Ey — F1)?

This value is positive, so the extremum is a minimum. As the measurement spectra
become more ill-conditioned, then (Es — F7)? —0 and the second term becomes large.
Thus the radius of curvature at the minimum becomes smaller and the variance changes
rapidly with the display energy so a small error will result in greatly increased noise.

Appendix B: Optimal Signal to Noise Ratio Generalized

Projection

In this Appendix, we derive the formula for the generalized projection coefficients that
yield the maximum signal to noise ratio. As formulated in Section 4.2, we want to solve

I(SNR)?
KON | = 0 (70)
where (KT D)?
KD
2 _
SNR = e (71)

Using the following results from Table 1

KD e QK D) oy o
T
K RAK) mjiAK ) - KT(% 4 Ry) = 2K R, (73)

where the last step in equation (73) follows from the fact that R4 is symmetric so
Ry = Ri. Finally, applying the quotient rule,

0 0
3@)279%—]‘8—5 (74)
ox \ g g2 ’

we can write

d(SNR)? (KTRAK)2(KTD)DT — (KTD)22KT R4
oK (KTRAK)? ‘

(75)
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Factoring the numerator

O(SNR)?
0K

T T (7T T
_ Q(KTD) (K RAK)g{TRiI]{()zl))(K RA) =0, (76)

it is clear that one solution is (K7 D) = 0, which is equivalent to

k= Y | (77)

—di/ds

Recall that, by definition, D = [dy, d3]”.
We can show that the other solution is K = Rle by substituting in the numerator
of equation (76). First note that, by the symmetry of R4,

KT =D"R;" = DTR}". (78)

Substituting the expression for K in the numerator of equation (76) shows that the
numerator and hence the derivative is equal to 0,

(KTRAK)DT —(KT"D)(KTRA) = (DTR*RAR;'D)D” —(D"R'D)(DTR;'R,) = 0.
(79)
Substituting the optimal K in the expression for the signal to noise ratio squared

_ 2
ovpz _ KTD? (D'RLID)
P KTRAK ~ DTR;'RAR;'D

=D'R,'D. (80)

Appendix C: Signal to Noise Ratio in a Conventional
Imaging System

In this Appendix, an expression is derived for the signal to noise ratio of a conventional
imaging system in terms of the m;; coefficients. The imaging task is as assumed in
Section 4.2.

First, we need an expression for the signal, as defined in that section. Substituting
equation (59) into equation (58) yields

(I +12) s gy = /S*(E)e_dlfl(E)_deQ(E)dE (81)
where
S*(E) = [S1(E) + S3(E)] e~ ALbf1(E)=Agp fo(E) (82)
Note that
(I + 1), = / 5*(E)dE. (83)
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Approximating the exponential in equation (81) for small values of its argument as
e~ W (E)=2f2(E) o 1 _ @, f1(E) — da fo(E), (84)

the equation becomes
u&+bkwﬁm(h+ngﬂh/SWEﬁﬂEME—d{/SHEﬁﬂEME. (85)

We need the logarithm of equation (85). Since the d; are assumed small, the logarithm
can be approximated as

log (It + I2) 4 5y = 1og (It + I2), — di (f1(E))1 4o — d2 (f2(E)) 45 (86)

where (.);,, denotes an average using spectrum S*(E) as a weighting function. The
signal 6L in a conventional system is thus closely approximated by

OL =log (I + Ig)(b+f) —log (I + I2), = —d1 (f1(E)) 15 — d2 (f2(E)) 145 (87)

Next, we need an expression for the noise. Assuming a Poisson distributed noise source
for simplicity, the variance is

1
Var(L) = ' .
ar(L) 5 (58)
Substituting this in equation (87) the signal to noise ratio is
SNR = ‘dl <f1(E)>1+2 + do <f2(E)>1+2‘ (Il + 12)1/2 (89)

This result must now be expressed in terms of the M;; coefficients. This can be done
by using the result stated in equation (26),

Mij = (f;(E)); - (90)
Using the linearity of the averaging operation,

M1y + Moy I

<f1(E)>1+2 = I, + I

(91)

¢ Mol + Mool
1241 2212

E = - - - .

<f2( )>1+2 Il 12

After some rearrangement of terms, the signal to noise ratio of a conventional system is

(92)

dy My1 + doMyo) I + (dy Moy + doMao) 15|

sNR = ! i
(I1 + I2) /

. (93)
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