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ABSTRACT

The energy spectrum of X-rays transmitted through the body contains important information. This information
can be extracted by using a vector space description of the attenuation coefficient as a function of energy.
The description is consistent with X-ray physics and is extremely accurate. The accuracy versus the number
of functions in the basis set is quantified by using a mathematical formulation based on the singular value
decomposition. This shows that a two function basis set gives sufficient accuracy for computed tomography and
other quantitative medical applications. The vector space formulation can be used to prove that, in general,
the line integral of the attenuation coefficient cannot be calculated from a single spectrum transmitted flux
measurement. However, complete energy dependent information can be calculated from two flux measurements
with different effective source spectra.

1. INTRODUCTION

Energy-selective techniques have a long history in X-ray physics, but it is only in recent times that the use
of accurate detectors and computers has allowed this essentially numerical information to be extracted in an
imaging system. The introduction of quantitative techniques into X-ray imaging necessitates the development of
a firm theoretical foundation for the extraction of the information. That is the purpose of this series of papers.

There are several requirements for this theoretical formulation. First, it should be consistent with the known
physics of the interactions of X-rays and matter. Second, it should be applicable within the theory of X-ray
imaging techniques which is primarily based on linear systems. A formulation is described in this paper which
satisfies both of these criteria and in addition is simple and economical. This formulation uses a vector space
description of X-ray attenuation coefficients as a function of energy.

In the first paper this vector space description is introduced and rigorously justified. It is shown to be
consistent with known X-ray physics and to represent the attenuation coefficient to an accuracy sufficient for even
the most demanding medical applications such as computed tomography. Previous work (Alvarez and Macovski
1976) justified the accuracy on physical grounds. In this paper we introduce a mathematical formulation which
computes the accuracy as a function of the number of dimensions of the space. This formulation can then be used
to study questions such as the effect of the X-ray energy range and the atomic number range on the representation
accuracy. The vector space theory is used to fundamentally analyze the information available from a single broad
spectrum measurement as in conventional radiography. We show that, in general, this single measurement can
not be used to calculate the line integral of the attenuation coefficient. Next, we show that an energy selective
system using two broad spectrum measurements can extract complete energy dependent information under quite
general conditions.

2. DESCRIPTIONS OF X-RAY ATTENUATION COEFFICIENTS

Although there are important nonlinearities, the description of X-ray imaging systems is based on linear theory.
Linear systems concepts such as point spread function and modulation transfer function have proven invaluable
understanding X-ray systems. Any technique for extracting energy dependent information must be linear if it is
to utilize this powerful linear systems foundation.

The fundamental physical quantity describing the object, measured by an X-ray imaging system, is the linear
attenuation coefficient If this is known, then the data measured by the system can be predicted. Single projection
systems (such as used in conventional radiography) measure the line integral of the attenuation coefficient while
computed tomography systems measure the attenuation coefficient at points in the object cross section.



While the use of linear techniques may seem obvious, some nonlinear techniques for extracting this information
have been introduced. These are the parameterization techniques (Rutherford, et al. 1976). These techniques
attempt to extract information by using a parametric model of the linear attenuation coefficients of the elements
as a function of atomic number, electron density, and X-ray energy. The approach has several problems. First,
it is difficult to derive accurate parametric expressions which are valid for the elements and energy range of
interest (Hawkes and Jackson 1980). Any errors in these expressions will lead to errors in the calculation of the
parameters. Second, and more fundamentally, it is difficult to rigorously generalize these expressions to realistic
cases. The models use parameters (such as effective atomic number) which are inherently nonlinearizable in the
measured data. Because of this problem, even as simple a situation as a mixture of elements requires an arbitrary
definition of average, or effective, parameters which is difficult to justify on physical grounds. As evidence of this
difficulty, several papers based on this approach have used different expressions for the effective atomic number
(McCullough 1975 and Rutherford, et al. 1976).

Vector space techniques expand the attenuation coefficient as a linear combination of known functions of
energy multiplied by undetermined coefficients.

WE) = Zaifi(E) (1)

Since the coefficients are the only unknown values in the expression, they carry all the information which will
be extracted by the imaging system. The systems described in this paper measure these basis set coefficients
which are obviously linearly related to the fundamental physical quantity, the linear attenuation coefficient.
Furthermore, if the attenuation coefficient varies with position, the vector space expansion will be

wx,y, 2 E) = Zai(l’,y,z)fi(E) (2)

This linear separation of the effects into position-dependent and energy dependent parts fits in naturally with
linear systems theory and can be readily applied to X-ray imaging systems.

The choice of basis functions f;(F) is crucial to this technique. Since the attenuation coefficient is smooth
except for a countable number of discontinuities, a suitable set can be found. However, this set could contain
a very large number of functions which would make it useless for any practical application. Fortunately, as
discussed in the next sections, the minimum number of required functions (the “dimensionality” of the space) is
actually quite small.

3. PHYSICAL CONSTRAINTS ON DIMENSIONALITY

The dimensionality of the vector space is an important property of the physical quantity being imaged. It
determines the complexity of the procedure for extracting the energy dependent information since the higher the
dimensionality, the more complex the procedure. Conversely, the coefficients of the basis functions completely
specify the attenuation coefficient. Thus, they represent all that can be deduced about the object from X-ray
attenuation measurements.

There are several important physical properties which must be incorporated in any description of the X-ray
attenuation coefficient. One of these, the “mixture rule,” states that the cross section for X-ray interactions
of an atom is independent of its chemical state. This is, of course, not exactly true. A whole field of X-ray
spectroscopy (Agarwal 1979) is concerned with extracting information about the chemical properties from these
changes. However, these effects are confined to (at most) a few keV from an absorption edge. Since most biological
materials have their absorption edges at energies substantially below those of interest in medical radiography
this effect can be ignored. A notable exception is iodine in the thyroid and contrast agents. These are high
atomic number materials with K-edges within the medical region. The chemical effects are still quite small but
they may affect high precision measurements (and be the basis for sensitive in-vivo analysis).



With the mixture rule, the linear attenuation coefficient can be expressed as
N
W(E) =S mioi(E) (3)
i=1

where n; is the number of atoms per unit volume, and o;(FE) is the total cross section at energyFE for element
1. This result is important for several reasons. First, it implies that the dimensionality of attenuation coefficient
space is less than or equal to the number of distinct elements within the object. For biological objects this is a
relatively small number. Second, since the attenuation coefficient of any material is a linear combination of the
attenuation coefficients of its constituent elements, it, in turn, is a suitable candidate for a basis function. This
result will be used in later discussions.

Another important physical principle which can be applied is the “sum rule” for the various X-ray interactions.
Since X-ray photons may be considered to be discrete, the various types of interactions are independent and
mutually exclusive. The total probability of not interacting is the product of the probabilities of not undergoing
a particular type of interaction, so, for a particular element, the total cross section is the sum of the cross sections
for each type of interaction. There are many possible types of interactions, but for energies in the diagnostic
spectrum, three types predominate: Compton scattering, photoelectric absorption, and Rayleigh (coherent)
scattering. Expressions can be derived which give these cross sections as a function of atomic number and
energy. If these cross sections were separable into multiplicative factors which were functions of atomic number
only and energy only, then this would imply that the dimensionality is smaller than the total number of elements.
That is, if the cross section for an element ¢ is

0i(E)=0.(F,Z;))+op(E,Z;) +or(E, Z;) + ... 4)
and
oc(E,Z) = Kc(Z)fc(E) (5)
op(E,Z) = Kp(Z)fr(E) (6)
or(E,Z) = Kr(2) fr(E) (7)
then

u(E) = fe(BE) + fp(E) + frR(E) + ... (8)

N N N
i=1 i=1 i=1

Equation. 8 implies that if the expressions are separable, the dimensionality of the vector space is equal to the
number of different types of interactions.

In order to study the separability, the cross sections can be plotted on a logarithmic plot. With separable
expressions, the curves for different elements will be parallel. Figure 1 shows such a plot for the photoelectric
interaction. Although the curves are not parallel, they are close to it. Similar results would be obtained for other
types of interactions.

These results indicate that, with measurements of sufficient precision, the effects of individual elements could
be resolved. For less accurate measurements, the changes with atomic number would not be resolvable and
the dimensionality of the space would be less than the number of elements. The dimensionality must then be
considered to be a function of measurement accuracy. Mathematical techniques for quantifying this observation
are discussed in the next section.
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Figure 1. Logarithm of photoelectric cross-section. The curves would be parallel if the cross sections for all elements were
represented by a common functional form.

4. THE SINGULAR VALUE DECOMPOSITION

The mathematical tools which will be used to study the dimensionality as a function of measurement accuracy
are based on matrix theory. The reason for the applicability of this theory is that the dimensionality of the space
is closely related to the rank of a matrix. An important application of the Singular Value Decomposition is to
determine the rank of a matrix whose elements are known to contain errors. This same tool will be applied in
this section to study the dimensionality of attenuation coefficient space as a function of measurement accuracy.

Consider a matrix whose columns are the values of the attenuation coefficients of various elements at many
energies in the medical diagnostic range. If the elements found in biological materials are included, then, by
the mixture rule, the columns will span the space of attenuation coefficients of body materials. That is, the
attenuation coefficient of any biological material can be expressed as a linear combination of the columns of the
matrix.

Analogous to the discussion in the previous section, if the entries in the matrix are considered to be of infinite
precision, almost all matrices will have full rank (that is, the rank is equal to the smaller of the number of
rows or columns). However, in any physical situation, the matrix entries (the measurements of the attenuation
coefficient) will have limited accuracy. In this case, another matrix with less than full rank may be found which
is “close” to the original matrix. If the “distance” between the matrices is less than the accuracy of the entries
of the original matrix, then the rank of the original matrix is equal to the rank of the approximating matrix to
the specified accuracy. This is the concept of numerical rank (Stewart 1973) which will be applied to describe
dimensionality of the attenuation coefficient space as a function of measurement accuracy.

In order to define “closeness”, a matrix norm must be introduced. This is a scalar function of the elements
of the matrix which is a measure of its size. The norm will be applied to measure the difference between the
full rank matrix and its lower rank approximating matrix. There are many candidates for a norm function. Any
computationally convenient function can be chosen so long as it satisfies the necessary properties of definiteness,
homogeneity, and the triangle inequality. A convenient norm can be defined by reasoning by analogy with a
vector norm. The 2-norm for a vector V' with components v; and dimension N is

Vil =




The analogous norm for a matrix is called the Frobenius norm. For a matrix B with elements b;; and dimensions
M by N the norm is

1Bl = (10)

A matrix norm defined in this way has all the desirable properties outlined above (Stewart 1973).

The difference between infinite precision and numerical rank can be understood by considering a diagonal
matrix, D. The infinite precision rank for this matrix is equal to the number of non-zero entries. The numerical
rank can also be determined from these values. In order to do this, the diagonal entries with small absolute value
can be replaced by zeros. The limited accuracy rank will be equal to the number of rows or columns minus the
number of entries dropped. If the entries are in numerical order and those in columns r + 1 to IV are set equal
to zero, the difference between the limited accuracy D and full precision matrices D, is equal to

1D~ D|l =

If this distance divided by the number of entries is small compared to the error in each of the members, then the
numerical rank of the original matrix is equal to the rank of the reduced matrix.

Suppose the matrix of interest B is not diagonal. In this case, the singular value decomposition theorem may
be applied to transform this case to the diagonal matrix case just described. According to this theorem, there
exist unitary matrices U and V such that

B=UDVH, (12)

where D is a diagonal matrix and V¥ is the complex conjugate of the transpose of V.

Since U and V are unitary matrices, multiplying by them does not change the value of the norm. Thus
the norms of the original and the diagonal matrices are the same. Suppose the columns of the matrices are
rearranged so that the diagonal elements of B are in descending order. Let D be the matrix with columns 7 + 1
to N equal to zero. The matrix

B=UDVH (13)

will have the following important property. No other matrix of rank r will be closer to B than B . That is,

|B— Bl = (14)

is minimum for all matrices of rank r . Thus, depending on the distribution of the diagonal elements of the
transformed matrix B, a matrix of reduced rank may be found which is closer to the original matrix than the
error in the terms (with closeness measured in terms of the Frobenius norm). From an experimental point of
view, the rank of the original matrix is no larger than that of the reduced matrix.

The mathematical technique for studying dimensionality as a function of the accuracy of the measurements
will be complete if a technique can he found for calculating the diagonal elements in the matrix D. The values
of the diagonal elements can be calculated by using the singular value decomposition theorem. They are the
eigenvalues of the matrix B. Numerical techniques for calculating the singular value decomposition are discussed
in the literature (Klema and Laub 1980).



Table 1. Singular Values for Biological Materials

| n | Singular Value |
1 .948
2 318
3 .0036
4 .000663
5} .000412
6 .000239
7 .000212
8 .000148
9 .0000361
1
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Figure 2. Error vs. number of functions in the basis set for biological materials. The error was computed using the SVD
as discussed in the text.

5. APPLICATIONS OF THE SVD TO THE DIMENSIONALITY OF X-RAY
ATTENUATION COEFFICIENT SPACE

As described in the two previous sections, any discussion of the dimensionality of a representation of attenuation
coefficients must consider the accuracy of the measurement technique. The dimensionality will also depend on
other factors such as the set of elements in the object and the X-ray energy region. In this section, quantitative
results are presented for the dimensionality of the attenuation coefficients of biological objects in a computed
tomography system.

The matrix tools in the previous section, including the singular value decomposition and the concepts of
matrix norms, will be applied as follows. First, tabulated values of the attenuation coefficient of various elements
are placed in a matrix. The SVD of this matrix is then calculated. By setting entries in the diagonal matrix
equal to zero, the closest approximating matrix of a given rank to the original matrix will be calculated as
well as the distance between the two matrices. This distance can then be plotted as a function of the rank of
the approximating matrix and compared to the expected error in the measurements. The results are based on
calculations using tabulated values of the X-ray linear attenuation coefficients from several sources (Veigele 1973
and McMaster et al. 1969). The numerical techniques are based on the algorithms developed by Golub and
Reinsch (1970) and implemented in the computer software package EISPACK.

Table 1 shows the singular values for a matrix containing the attenuation coefficients of elements with atomic
numbers (1,6,7,8,15,16,17,19,20). These span the range of elements commonly found in biological materials. The
attenuation coefficients are calculated for a set of energies (30 to 150 keV) that also span the range used in
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Figure 3. Errors with a two function basis set vs the number of different elements in the material. The elements are those
found in significant quantities in biological materials, which were used in Table 1.

medical radiographic applications. These are plotted in Figure 2. Note that the scale is logarithmic so the first
two values are much larger than the rest of the values. As discussed in the previous section, this implies that a
two function basis set can give an accurate approximation of the values of all the elements in Table 1.

5.1 Dimensionality Versus Atomic Number Range

An important consideration is the effect on the dimensionality of the range of atomic numbers in the set of
chemical elements that we are approximating. This was calculated by adding new columns representing the
attenuation coefficients of elements with increasing atomic number to the data matrix and then calculating the
singular value decomposition of each of these data matrices. The mean relative error with a two function basis
set, computed using Equation (14), is shown as a function of the range of atomic numbers in Figure 3. Since
there is a small atomic number dependence of the interaction cross- sections, the errors would be expected to
increase. As shown, they increase somewhat as the range becomes larger. However, the increase in errors is
small so a two function set provides a good approximation. For the complete set of elements and the specified
X-ray energy range, the average relative error with a two function basis set is .004. In CT, this corresponds to
4 Hounsfield Units (HU) and this is less than or comparable to the error introduced by X-ray quantum noise.

5.2 Dimensionality versus Energy Range

As the range of energies increases, the dimensionality would also be expected to increase. If the range does not
encompass K-edges or regions (such as that greater than 2m.c?) where pair-production becomes important, the
increase should not be large. These intuitive considerations are supported by the data in Figure 4. This plots the
mean relative error as a function of energy range. The upper energy was fixed at 500 keV while the lower energy
was varied. Thus at the lower energies in the plot the range is larger. The data set contained the biological
element set used in Figure 2.

5.3 Dimensionality with K-edge in Energy Range

If the energy range contains a discontinuity in the attenuation coefficient of one of the elements, the results are
substantially different. Figure 5 shows the singular values for a set of elements including iodine for an energy
range from 30 to 150 keV. Note that this range includes the K-edge of iodine at 33.2 keV. The dimensionality of
the space is now equal to three for even moderate accuracies.
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Figure 4. Error with a two function basis set vs. x-ray energy range. The range is the maximum minus the minimum
X-ray energy.
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Figure 5. Singular values with K-edge in energy range. Note that now three functions are required.



0.8
0.6
@ 0.4 \O“o”'u.,o
Nl
S 0.2 N
g N
= (]
[} 0 -
n -
X4 :
@ -0.2 -
o) -
= :
E -04 :
g_ z
-0.6 :
-0.8 =g function 1
- @ 1 function 2
-1 o)
0 50 100 150 200
Energy (keV)

Figure 6. Optimal basis set functions. These functions result in the minimum error in approximating the attenuation

coefficients with two functions.

5.4 Discussion

The results presented in this section indicate that the dimensionality of x-ray attenuation space is equal to
two even for the accuracies achieved in computed tomography. Although the use of a broader energy range or
the inclusion of high atomic number materials increases the errors with a two function basis set, these are still
substantially less than the errors due to quantum noise. Thus, for almost all uses in medical radiography

WE) = a1 f1(E) + a2 f2(E) (15)

where f1(E) and fo(F) are attenuation coefficients of elements with atomic numbers similar to those found in

the body.
Two details of the calculations should be considered. The most important is the effect of errors in the data.

Although the data used are considered to be the most accurate available, they still contain errors. While these
errors probably would not affect the conclusions, they may change the numerical values of the smaller singular
values. Another consideration is the effect of energy sampling. Theoretically, the attenuation coefficients should
be considered to be continuous functions of energy while our results are based on samples. The effect of these
samples was studied by increasing the number while keeping the energy range fixed. For a large enough number
of samples, the results converged to a single set of singular values. A sufficient number of energy samples was

used so that the results should be close to those with a very large number of samples.

6. THE OPTIMAL BASIS SET FUNCTIONS

As discussed previously the SVD gives the optimal approximating matrix of a given rank to the original matrix.
By studying equation (12), it is clear that the optimal basis functions are the first r columns of the matrix
U. Figure 6 is a plot of the first two columns of this matrix. SinceU is unitary, the columns are orthogonal.
These two columns can be considered to be samples of the optimal basis set functions at the energies used in the

attenuation coefficient matrix.

7. VECTOR SPACE DESCRIPTIONS OF MIXTURES AND LINE INTEGRALS

A linear vector space representation allows simple geometrical representations to be used to describe the attenu-
ation of mixtures and line integrals. This model consists of a set of rules for manipulating the coefficients directly

without regard for the energy functions. These rules are derived in this section.
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Figure 7. Vector interpretation of the basis set coefficients of a mixture.

The fundamental law is the mixture rule. By this rule, the total, linear attenuation coefficient p is related to
the attenuation coefficients of the constituents by

N
H Hi

- = E W;— 16
P =1 Pi ( )

where pis the overall density, W; is the fraction by weight of element i in the mixture and p; is its density.

Thus, if the basis set coefficients for the elements in the mixture are (a1,,a9;) then the basis set coefficients
for the mixture are:

N

a; = Z Wiﬁ_ali (17)
i=1 pi
N

ag = Z Wigagi (18)
i=2 v

This can be considered to be a weighted vector sum and given a graphical interpretation as shown in Figure 7.

The line integrals of a mixture have a similar interpretation. The line integral of an inhomogeneous object is
L(E) = /,u(aj,y, z; E)ds (19)

Introducing the vector space description of the attenuation coefficient, the line integral is
L(E) = fl(E)/al(x,y,z)ds—l—fg(E)/ag(x,y,z)ds (20)

Denoting the line integrals of the basis set coefficients as A; and A, the line integral is then

L(E) = A1 f1(E) + A2 f2(E) (21)
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Figure 8. Vector interpretation of line integrals of basis set coefficients for a mixture.

If the object is composed of a single material with coefficients (a1, a2) and has a thickness [ the line integrals
will be
Al = all (22)

and
A2 = CLQZ . (23)

If it is composed of several materials in different regions with coefficients (a4, a2;) and thicknesses [; , the line
integrals are

N
Al = Zalili (24)
i=1

and

N
A2 = Z azili. (25)
i=1

An object modeled to be a mixture of several materials with the ratio of the amounts of the materials varying
gives similar results. In any case, due to the linear nature of the vector space model and the sum rule, the total
line integrals can also be modeled to be weighted vector sums of the line integrals of the materials in the object.
This is illustrated in Figure 8.

8. THE CALIBRATION MATERIAL BASIS SET

Note that the results of the previous sections are independent of any parameterization of the cross sections for
the various interactions. All that is necessary is that the attenuation coefficient of a given element be expressible
as a linear combination of the attenuation coefficient of other elements. Since the attenuation coefficients of
real materials are a linear combination of the attenuation coefficients of their elements (by the mixture rule)



Table 2. Accuracy of Calibration Material Basis Set

| Z] a | ap [ rms fractional error (%) |

1 2.2298 | -0.27396 0.29026
2 1.1211 | -0.13334 0.17917
3 | 0.96715 | -0.10971 0.09164
4 | 0.98483 | -0.10255 0.0652
) 1.0087 | -0.08729 0.03254
6 1.0557 | -0.05785 0.02771
7 1 0 0

8 | 0.92372 | 0.08147 0.02035
9 | 0.76582 | 0.18902 0.06501
10 | 0.6782 0.33074 0.09362
11 | 0.47834 | 0.49541 0.12483
12 | 0.28195 | 0.72698 0.18738
13 0 1 2e-005
14 | -0.31465 | 1.3321 0.29977
15 | -0.68005 | 1.6622 0.38051
16 | -1.0716 2.1168 0.14641
17 | -1.6213 2.6063 0.30005
18 | -1.9095 2.8529 0.22294
19 | -2.7208 3.7283 0.287
20 | -3.3678 4.5083 0.40408

and since the attenuation coefficients of the elements are a linear combination of two elements, the attenuation
coefficient function of any two distinct materials can be used as a basis set (Alvarez 1976). This approach is
preferable to a parameterization approach for two reasons. First, it is more accurate for a given dimensionality.
Second, it allows calibration of the solution of equations for the energy selective information to be in terms of
lengths instead of complex measurements based on attenuation coefficients.

The use of a real material basis set is more accurate than the parametrization approach because it removes
errors due to inaccuracies in the expressions for the energy dependence of the interactions (Lehmann 1982). The
relative accuracy of these approaches is illustrated in Table 2. This shows the root mean square (rms) fractional
error in fitting the mass attenuation coefficients (Veigele 1973) of elements with atomic numbers from 1 to 30.
The real material basis set used the attenuation coefficients of nitrogen and phosphorus (atomic numbers 7 and
15) as the basis functions. The basis set coefficients were determined by least squares fitting to the data. This
was compared to the effective atomic number and electron density parameterizations of McCullough (1975) and
Rutherford (1976). Note that for all elements tested the real material basis set had smaller errors.

The use of a real material attenuation coefficient basis set has important practical advantages in the calibration
procedure used to solve for the energy-selective information. Suppose the attenuation coefficient functions of the
calibration materials themselves are used as the basis set (Alvarez 1976). Then the basis set coefficients in the
calibration phantom are simply zero or one.

() =1x f1(E)+0x fo(E) (26)
13(B) = 0% f1(E) + 1% f2(E). (27)

The line integrals of the basis set coefficients are then just the thicknesses of the calibration materials along
the path of the X-ray beam. That is

N
Al = Z ailli (28)
=1



with a similar result for A2 . Since the accuracy of the information extraction technique (Alvarez and Macov-
ski 1976) rests on the measurement of these line integrals, this transformation of the line integrals to length
measurements substantially improves the quantitative usefulness of the technique.

9. CALCULATION OF LINE INTEGRAL [u(X,Y,Z: E)DS FROM A SINGLE
MEASUREMENT

X-ray imaging systems do not measure the attenuation coefficient directly. Rather, they measure the flux
transmitted through the object. Neglecting scatter and assuming an infinitesimally narrow beam, the flux is
given by

I= / S(E)e LEE (29)

where S(E) is the energy spectral density of the source, and L(E) = [ u(z,y,z : E)ds is the line integral of
the linear attenuation coefficient. In many quantitative applications, such as computed tomography and digital
radiography, it is desired to calculate the line integral at a single energy from the flux. in this section, we show
that, even if the spectrum is known, this is not possible except in special circumstances. The best that can
be done in a practical clinical situation is an approximation which will be accurate only under a limited set of
conditions.

Using the vector space description of the attenuation coefficient, the line integral at a single energy E is

L(Ey) = A1 f1(Eo) + A2 f2(Eo) (30)

For a given energy, the basis functions fi(Ep) and fa(Ey) are constant and the problem of the calculation of a
line integral may be generalized mathematically as follows: Is there any way to calculate a linear combination
of the line integrals of the basis set coefficients from a single flux measurement? The following theorem answers
this question.

If the spectrum is not monoenergetic and if the object consists of more than one material, then
an invertible function g(I) does not exist such that

g(I) = k1 A1 + k2 As (31)
where kjand ksare constants.

By the discussion above, this theorem includes the calculation of the line integral as a special case.

First, consider the special case of an object known to consist of a single material. In this case the flux can be
used to calculate the line integrals. These are given by equation (22) and the object vectors are constrained to
lie along a straight line passing through the origin of the vector space. The flux is a function only of the material
thickness [

141, 42) = 10 = [ S(E)eap(-ant [f1<E> T Z—fh(E)] )dE (32)

Note that (a1, a2) are constants for the single material case.

The derivative

dI

T=" / [a1f1(E) + az f2(E)] S(E)exp(—ayl [fl(E) + Z—jfz(E)} )dE (33)

is always less than zero since S(E) and the attenuation coefficient

W(E) = [a1f1(E) + a2 f2(E)] (34)



are always greater than zero. Thus the flux is a monotonically decreasing function of the material thickness and
the flux can be used to calculate the thickness I (and therefore the line integral).

The proof of the impossibility for the general material case is in two steps. First, we show that if the invertible
function g exists the contour curves of I(A;, A2) must be straight lines. Next we show that these contour curves
are not straight lines thus proving the result by contradiction. For the first part of the proof, consider the
composite function h(Ay, As) = g[I(A1, A2)]. If g exists then

h(Aq, Ag) = k1 A1 + ko Ag (35)

where kjand koare constants. The function g is invertible so, if h(A4;, A2) is equal to a constant ¢ then I(A;, Ag)
is equal to the unique constant g(c) on this line which then must be a contour curve of I(A4;, A2). Thus if g(I)
exists the contour curves of I are straight lines.

The proof that the contour curves of (A1, A3) are not straight lines rests on the fact that the basis functions
f1(E) and fo(E) are linearly independent. The equation of the contour curves is

¢= / S(B)exp |~ Ay f1(E) — A fo(E)| dE (36)

Differentiating this expression implicitly gives the value of the slope of the contour curve through any point
(A1, Ag).
dAy [ fo(E)S(E)exp [-A1f1(E) — Ao f2(E)] dE

dAr [ f1(E)S(E)exp [— Ay f1(E) — Az fo(E)] dE

(37)

If the contour is a straight line, then this slope must be a constant and equal to, say, a along the line Ay = aA;+p.
That is,
dAs J fo(E)S(E)exp[—Ai fi(E) — (aAr + B) f(E)] dE

= o =

dA, [ f(E)S(E)exp[—A1 f1(E) — (aA; + B) f(E)] dE

(38)

for all A;. Multiplying by the integral in the denominator and gathering terms on one side of the equation shows
that if the contours are straight lines, then

/ @fi(E) + fo(B)] S(E)eap [ As fo(E) — (s + B)f(E)] dE = 0. (39)

Since this must be true for all Ay, if the spectrum S(FE) (which is non-negative) is not a delta function, then
there exists a constant a, such that
afi(E)+ fa(E) =0 (40)

for all energies E. That is, if the contour curves are straight lines, then the basis functions are linearly dependent.
This is not true, so the contour curves of I(A1, As) are not straight lines and the proof is completed.

It is instructive to consider the monoenergetic spectrum case where S(F)is a delta function, say §(F — Ep).
In that case, the contour curves of T(Aj, As) are straight lines with slope

dAs _ fa(Eo

dAr fi(Bo

~—

: (41)

~—

This does not imply that the basis functions are linearly dependent since equation (41) has to be satisfied only
at one energy.

Although the theorem just presented shows that, in general, a linearizing function does not exist, there may
be cases where a good approximate linearizing function can be defined (Alvarez 1976). In computed tomography,
errors in estimating the line integral result in beam hardening artifacts and techniques have evolved to minimize
these errors (Stonestrom et al. 1980). One possibility is to have a spectrum which is near to monoenergetic. This



can be achieved by prefiltering the incident beam. Another possibility is to use a water bath so that the effective
object attenuation approaches a single material case. The most complex approaches use information from all the
projections along with a-priori models of body tissue composition to calculate corrected line integrals. Although
these techniques reduce the artifact problem, they will only work under specialized circumstances and will fail if
the object does not fit their assumptions.

10. INVERTIBILITY OF THE DUAL ENERGY EQUATIONS

The previous section demonstrated that the line integral can not be calculated from a single flux measurement. In
this section we show that under quite general conditions complete energy dependent X-ray attenuation informa-
tion, i.e., the attenuation at any energy in the diagnostic region, can be calculated from two flux measurements
with different source spectra. This is done by deriving a procedure to calculate the line integrals of the basis set
coefficients A; and A,. In a single projection system these can be used with Equation (21) to calculate the line
integral at any energy. In a CT system the line integrals can be reconstructed to give cross sectional images of
the value of the basis set coefficients, Then using the fundamental vector space decomposition the attenuation
coefficient can be calculated at any energy. In either case, the results represent all the information which can be
inferred from X-ray attenuation measurements.

Using the expression for the attenuation coefficient line integral L(E), (21) in the equation for the transmitted
flux (29), shows that the flux is a function of two independent variables, A; and A, (the source spectrum is
assumed to be constant). Since there are two variables this single measurement cannot in general be inverted
to yield the line integrals. However, suppose another measurement is made with a different effective source
spectrum. This could be effected either by using an energy resolving detector or by varying the spectrum by
switching the X-ray tube voltage. This gives two functional relationships

Il (Al,AQ) = /Sl (E)G.Ip[—Alfl(E) — AQfQ(E)]dE (42)

IQ (Al,AQ) = /SQ(E)G.I])[—Alfl(E) - AQfQ(E)]dE (43)

and therefore defines a transformation between the measured quantities (I7,I3) and the desired quantities
(A1, A2). An important question is under what conditions this transformation is invertible.

Before discussing the situation in general, two simple but important cases will be discussed. The first case
is the use of two monoenergetic spectra with energies £; and F5. In this case the flux measurement can be
linearized by taking the logarithm of the flux measurements (42). The result is that the logarithms of the
measurements and the line integrals are related by the linear equations

tog | 12| = ~usu(81) - Ao (44)
10

t0g | 12| =~ 0518 - Ao (45)
20

where Iy and Isg are the measurements with zero object thickness. These equations can be solved uniquely for
the line integrals if the determinant of the coefficients is not equal to zero:

fi(Er)  f2(Er)
fi(E2)  f2(E2) ’ 70 (46)
That is if (B £1(Es)
1(Er 1(Eo
f2(En) 7 f2(E2) 47)
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Figure 9. Ratio of optimal basis set functions. Since the ratio is not constant, the condition in Equation 47 is satisfied.

Figure 9 shows a plot of the ratio of the basis set functions versus energy in the medical diagnostic region. Note
that the ratio is monotonically decreasing. Thus, the condition in equation (47) will be true if the two energies
are different.

Another useful special case is when the object is known to consist of a single material. As discussed in the
previous section, a single flux measurement suffices if the exact composition is known. The thickness can be
calculated as previously discussed and equation (22) can then be used to calculate the line integrals. For the
general case, the following theorem is useful (Fulks 1969 page 284):

Let F be a continuously differentiable mapping defined on an open region D in E2; with range R
in E2 ; and lets its Jacobian be never zero in D. Suppose further that C is a simple closed curve that,
together with its interior (recall the Jordan curve theorem), lies in D, and that F is one-to-one on C.
Then the image T of C is a simple closed curve that, together with its interior, lies in R. Furthermore,
F is one-to-one on the closed region consisting of C and its interior, so that the inverse transformation
can be defined on the closed region consisting of T and its interior.

which I paraphrase as

If the Jacobian of a continuously differentiable two dimensional mapping is nonzero throughout
an open region D and if the mapping is one to one on a simple closed curve C which lies in D, then
the mapping is one to one on C and its interior.

By using this theorem the following result can be established:

If two spectra with different maximum energies and such that suitably defined average energies of
the spectra transmitted through an object are not equal over a region of the (A;, As)plane containing
the points for the object, then the two flux measurements (given by equation (42) ) can be used to
uniquely calculate the values of the line integrals.

In order to establish this result using the previously quoted theorem the Jacobian must be shown to be nonzero
throughout a region in the (A;, A2) plane and the transformation must be shown to be invertible on a closed
simple curve in this region. The region shown in Figure 10 will be used. It consists of the first quadrant of the
plane. This is a region of theoretical and practical importance because a basis set consisting of the attenuation
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Figure 10. Closed contour used in proof of invertibility. The contour consists of the two axes, drawn slightly offset to
show the contour, and a large portion of a circle to close it.

coefficients of the calibration materials is usually used, Since only positive equivalent thicknesses of the calibration
materials can be used, this region must contain all the measured values. The closed curve will consist of the axes
and a portion of a circle (with a large radius so that all points in the object are included) centered on the origin
joining the axes. This curve is also shown in Figure 10.

Instead of using the flux measurement directly, suppose the logarithm of the flux is used. The results will
be equivalent so long as the flux is greater than zero. With the log, the components of the Jacobian of the

transformation are
S Fi(B)Si(E)exp—Aif1(E) — Az fo(E)|dE

Ji = ij=1,2 48
1= T TS B e Ah(B) - Af(BaE 1)
Note that by defining two normalized spectra
- Si(E)exp[—A1 f1(E) — As f2(E)] -
S(E) = i=1,2 49
E) = TS B)eapl—n [1(B) — Asfo(B))dE 1)
the Jacobian can be written as
J= —<fi>1 —<fa>: (50)

—< fi>s —< fa>o

where <>; denotes the average using the normalized spectrum S;(E). Thus the condition for the Jacobian not

being zero is equivalent to
< fi>1 , <f1>2

< fa>1 < fo>o

(51)

This condition must be tested for individual spectra.

In order to complete the proof of invertibility, the transformation must be shown to be invertible on a closed
curve in the domain. The simply cases discussed at the beginning of this section may be used for this proof.
The parts of the curve along the axes are special cases of the single material case. By the previous results,



these cases are invertible. The circle of large radius is an approximation of the single energy case. For large
radius there will be high attenuation. With beam hardening, the transmitted spectrum with large attenuation
approaches a monoenergetic spectrum at the maximum energy in the spectrum. If the maximum is different
for each spectrum, we can approach the known invertible monoenergetic case arbitrarily closely by making the
radius larger and larger.

If the Jacobian can be shown to be non-zero throughout a region of line integral values including those of the
object, then these results guarantee that the flux measurements can be inverted to give the line integral values.
Consider x-ray tube voltage switching as an example. In the tube spectrum, the maximum energy is the tube
voltage times the electron charge. So, if the two voltages are different, these results imply that the equations will
be invertible to compute the line integrals from the transmitted fluxes with the two voltages. The line integrals
are all the information that can be produced by a single projection system. If a CT system is used then the
line integrals can be reconstructed to give the values of the basis set coefficients in the object’s cross-section.
Techniques for extracting medically useful information from these line integrals or coefficients will be discussed
in the second paper in this series (Alvarez and Lehmann 1982).

11. CONCLUSIONS

The X-ray linear attenuation coefficient as a function of energy can be accurately described by a vector space
model. The accuracy of this description depends on the number of functions in the basis set. By using the
singular value decomposition theorem of matrix algebra, the dependence of the errors on the dimensionality
of the space can be quantified. For an energy range which does not include discontinuities in the attenuation
coefficient, a two function basis set provides excellent accuracy.

The vector space decomposition has many important uses. It provides a theoretical framework for under-
standing the effect of energy dependent attenuation on conventional X-ray systems. These results have important
implications for quantitative X-ray systems such as computed tomography and digital fluoroscopy. The vector
space formulation can also be used to design and analyze systems which extract energy dependent information.
This includes both energy-selective computed tomography and digital radiography systems.
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