
Energy Dependent Information in X-Ray Imaging:

Part 1. The Vector Space DescriptionRobert E. AlvarezABSTRACTThe energy spetrum of X-rays transmitted through the body ontains important information. This informationan be extrated by using a vetor spae desription of the attenuation oe�ient as a funtion of energy.The desription is onsistent with X-ray physis and is extremely aurate. The auray versus the numberof funtions in the basis set is quanti�ed by using a mathematial formulation based on the singular valuedeomposition. This shows that a two funtion basis set gives su�ient auray for omputed tomography andother quantitative medial appliations. The vetor spae formulation an be used to prove that, in general,the line integral of the attenuation oe�ient annot be alulated from a single spetrum transmitted �uxmeasurement. However, omplete energy dependent information an be alulated from two �ux measurementswith di�erent e�etive soure spetra. 1. INTRODUCTIONEnergy-seletive tehniques have a long history in X-ray physis, but it is only in reent times that the useof aurate detetors and omputers has allowed this essentially numerial information to be extrated in animaging system. The introdution of quantitative tehniques into X-ray imaging neessitates the development ofa �rm theoretial foundation for the extration of the information. That is the purpose of this series of papers.There are several requirements for this theoretial formulation. First, it should be onsistent with the knownphysis of the interations of X-rays and matter. Seond, it should be appliable within the theory of X-rayimaging tehniques whih is primarily based on linear systems. A formulation is desribed in this paper whihsatis�es both of these riteria and in addition is simple and eonomial. This formulation uses a vetor spaedesription of X-ray attenuation oe�ients as a funtion of energy.In the �rst paper this vetor spae desription is introdued and rigorously justi�ed. It is shown to beonsistent with known X-ray physis and to represent the attenuation oe�ient to an auray su�ient for eventhe most demanding medial appliations suh as omputed tomography. Previous work (Alvarez and Maovski1976) justi�ed the auray on physial grounds. In this paper we introdue a mathematial formulation whihomputes the auray as a funtion of the number of dimensions of the spae. This formulation an then be usedto study questions suh as the e�et of the X-ray energy range and the atomi number range on the representationauray. The vetor spae theory is used to fundamentally analyze the information available from a single broadspetrum measurement as in onventional radiography. We show that, in general, this single measurement annot be used to alulate the line integral of the attenuation oe�ient. Next, we show that an energy seletivesystem using two broad spetrum measurements an extrat omplete energy dependent information under quitegeneral onditions.2. DESCRIPTIONS OF X-RAY ATTENUATION COEFFICIENTSAlthough there are important nonlinearities, the desription of X-ray imaging systems is based on linear theory.Linear systems onepts suh as point spread funtion and modulation transfer funtion have proven invaluableunderstanding X-ray systems. Any tehnique for extrating energy dependent information must be linear if it isto utilize this powerful linear systems foundation.The fundamental physial quantity desribing the objet, measured by an X-ray imaging system, is the linearattenuation oe�ient If this is known, then the data measured by the system an be predited. Single projetionsystems (suh as used in onventional radiography) measure the line integral of the attenuation oe�ient whileomputed tomography systems measure the attenuation oe�ient at points in the objet ross setion.



While the use of linear tehniques may seem obvious, some nonlinear tehniques for extrating this informationhave been introdued. These are the parameterization tehniques (Rutherford, et al. 1976). These tehniquesattempt to extrat information by using a parametri model of the linear attenuation oe�ients of the elementsas a funtion of atomi number, eletron density, and X-ray energy. The approah has several problems. First,it is di�ult to derive aurate parametri expressions whih are valid for the elements and energy range ofinterest (Hawkes and Jakson 1980). Any errors in these expressions will lead to errors in the alulation of theparameters. Seond, and more fundamentally, it is di�ult to rigorously generalize these expressions to realistiases. The models use parameters (suh as e�etive atomi number) whih are inherently nonlinearizable in themeasured data. Beause of this problem, even as simple a situation as a mixture of elements requires an arbitraryde�nition of average, or e�etive, parameters whih is di�ult to justify on physial grounds. As evidene of thisdi�ulty, several papers based on this approah have used di�erent expressions for the e�etive atomi number(MCullough 1975 and Rutherford, et al. 1976).Vetor spae tehniques expand the attenuation oe�ient as a linear ombination of known funtions ofenergy multiplied by undetermined oe�ients.
µ(E) =

∞
∑

i=1

aifi(E) (1)Sine the oe�ients are the only unknown values in the expression, they arry all the information whih willbe extrated by the imaging system. The systems desribed in this paper measure these basis set oe�ientswhih are obviously linearly related to the fundamental physial quantity, the linear attenuation oe�ient.Furthermore, if the attenuation oe�ient varies with position, the vetor spae expansion will be
µ(x, y, z;E) =

∞
∑

i=1

ai(x, y, z)fi(E) (2)This linear separation of the e�ets into position-dependent and energy dependent parts �ts in naturally withlinear systems theory and an be readily applied to X-ray imaging systems.The hoie of basis funtions fi(E) is ruial to this tehnique. Sine the attenuation oe�ient is smoothexept for a ountable number of disontinuities, a suitable set an be found. However, this set ould ontaina very large number of funtions whih would make it useless for any pratial appliation. Fortunately, asdisussed in the next setions, the minimum number of required funtions (the �dimensionality� of the spae) isatually quite small.3. PHYSICAL CONSTRAINTS ON DIMENSIONALITYThe dimensionality of the vetor spae is an important property of the physial quantity being imaged. Itdetermines the omplexity of the proedure for extrating the energy dependent information sine the higher thedimensionality, the more omplex the proedure. Conversely, the oe�ients of the basis funtions ompletelyspeify the attenuation oe�ient. Thus, they represent all that an be dedued about the objet from X-rayattenuation measurements.There are several important physial properties whih must be inorporated in any desription of the X-rayattenuation oe�ient. One of these, the �mixture rule,� states that the ross setion for X-ray interationsof an atom is independent of its hemial state. This is, of ourse, not exatly true. A whole �eld of X-rayspetrosopy (Agarwal 1979) is onerned with extrating information about the hemial properties from thesehanges. However, these e�ets are on�ned to (at most) a few keV from an absorption edge. Sine most biologialmaterials have their absorption edges at energies substantially below those of interest in medial radiographythis e�et an be ignored. A notable exeption is iodine in the thyroid and ontrast agents. These are highatomi number materials with K-edges within the medial region. The hemial e�ets are still quite small butthey may a�et high preision measurements (and be the basis for sensitive in-vivo analysis).



With the mixture rule, the linear attenuation oe�ient an be expressed as
µ(E) =

N
∑

i=1

niσi(E) (3)where ni is the number of atoms per unit volume, and σi(E) is the total ross setion at energyE for element
i. This result is important for several reasons. First, it implies that the dimensionality of attenuation oe�ientspae is less than or equal to the number of distint elements within the objet. For biologial objets this is arelatively small number. Seond, sine the attenuation oe�ient of any material is a linear ombination of theattenuation oe�ients of its onstituent elements, it, in turn, is a suitable andidate for a basis funtion. Thisresult will be used in later disussions.Another important physial priniple whih an be applied is the �sum rule� for the various X-ray interations.Sine X-ray photons may be onsidered to be disrete, the various types of interations are independent andmutually exlusive. The total probability of not interating is the produt of the probabilities of not undergoinga partiular type of interation, so, for a partiular element, the total ross setion is the sum of the ross setionsfor eah type of interation. There are many possible types of interations, but for energies in the diagnostispetrum, three types predominate: Compton sattering, photoeletri absorption, and Rayleigh (oherent)sattering. Expressions an be derived whih give these ross setions as a funtion of atomi number andenergy. If these ross setions were separable into multipliative fators whih were funtions of atomi numberonly and energy only, then this would imply that the dimensionality is smaller than the total number of elements.That is, if the ross setion for an element i is

σi(E) = σc(E,Zi) + σP (E,Zi) + σR(E,Zi) + . . . (4)and
σC(E,Z) = KC(Z)fC(E) (5)
σP (E,Z) = KP (Z)fP (E) (6)
σR(E,Z) = KR(Z)fR(E) (7)then

µ(E) =

[

N
∑

i=1

niKC(Zi)

]

fC(E) +

[

N
∑

i=1

niKP (Zi)

]

fP (E) +

[

N
∑

i=1

niKR(Zi)

]

fR(E) + . . . (8)Equation. 8 implies that if the expressions are separable, the dimensionality of the vetor spae is equal to thenumber of di�erent types of interations.In order to study the separability, the ross setions an be plotted on a logarithmi plot. With separableexpressions, the urves for di�erent elements will be parallel. Figure 1 shows suh a plot for the photoeletriinteration. Although the urves are not parallel, they are lose to it. Similar results would be obtained for othertypes of interations.These results indiate that, with measurements of su�ient preision, the e�ets of individual elements ouldbe resolved. For less aurate measurements, the hanges with atomi number would not be resolvable andthe dimensionality of the spae would be less than the number of elements. The dimensionality must then beonsidered to be a funtion of measurement auray. Mathematial tehniques for quantifying this observationare disussed in the next setion.
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HFigure 1. Logarithm of photoeletri ross-setion. The urves would be parallel if the ross setions for all elements wererepresented by a ommon funtional form.4. THE SINGULAR VALUE DECOMPOSITIONThe mathematial tools whih will be used to study the dimensionality as a funtion of measurement aurayare based on matrix theory. The reason for the appliability of this theory is that the dimensionality of the spaeis losely related to the rank of a matrix. An important appliation of the Singular Value Deomposition is todetermine the rank of a matrix whose elements are known to ontain errors. This same tool will be applied inthis setion to study the dimensionality of attenuation oe�ient spae as a funtion of measurement auray.Consider a matrix whose olumns are the values of the attenuation oe�ients of various elements at manyenergies in the medial diagnosti range. If the elements found in biologial materials are inluded, then, bythe mixture rule, the olumns will span the spae of attenuation oe�ients of body materials. That is, theattenuation oe�ient of any biologial material an be expressed as a linear ombination of the olumns of thematrix.Analogous to the disussion in the previous setion, if the entries in the matrix are onsidered to be of in�nitepreision, almost all matries will have full rank (that is, the rank is equal to the smaller of the number ofrows or olumns). However, in any physial situation, the matrix entries (the measurements of the attenuationoe�ient) will have limited auray. In this ase, another matrix with less than full rank may be found whihis �lose� to the original matrix. If the �distane� between the matries is less than the auray of the entriesof the original matrix, then the rank of the original matrix is equal to the rank of the approximating matrix tothe spei�ed auray. This is the onept of numerial rank (Stewart 1973) whih will be applied to desribedimensionality of the attenuation oe�ient spae as a funtion of measurement auray.In order to de�ne �loseness�, a matrix norm must be introdued. This is a salar funtion of the elementsof the matrix whih is a measure of its size. The norm will be applied to measure the di�erene between thefull rank matrix and its lower rank approximating matrix. There are many andidates for a norm funtion. Anyomputationally onvenient funtion an be hosen so long as it satis�es the neessary properties of de�niteness,homogeneity, and the triangle inequality. A onvenient norm an be de�ned by reasoning by analogy with avetor norm. The 2-norm for a vetor V with omponents vi and dimension N is
‖V ‖ =

√

√

√

√

N
∑

i=1

v2i . (9)



The analogous norm for a matrix is alled the Frobenius norm. For a matrix B with elements bij and dimensions
M by N the norm is

‖B‖ =

√

√

√

√

M
∑

i=1

N
∑

j=1

b2ij (10)A matrix norm de�ned in this way has all the desirable properties outlined above (Stewart 1973).The di�erene between in�nite preision and numerial rank an be understood by onsidering a diagonalmatrix, D. The in�nite preision rank for this matrix is equal to the number of non-zero entries. The numerialrank an also be determined from these values. In order to do this, the diagonal entries with small absolute valuean be replaed by zeros. The limited auray rank will be equal to the number of rows or olumns minus thenumber of entries dropped. If the entries are in numerial order and those in olumns r + 1 to N are set equalto zero, the di�erene between the limited auray D̃ and full preision matries D, is equal to
‖D − D̃‖ =

√

√

√

√

N
∑

i=r+1

d2i (11)If this distane divided by the number of entries is small ompared to the error in eah of the members, then thenumerial rank of the original matrix is equal to the rank of the redued matrix.Suppose the matrix of interest B is not diagonal. In this ase, the singular value deomposition theorem maybe applied to transform this ase to the diagonal matrix ase just desribed. Aording to this theorem, thereexist unitary matries U and V suh that
B = UDV H . (12)where D is a diagonal matrix and V H is the omplex onjugate of the transpose of V .Sine U and V are unitary matries, multiplying by them does not hange the value of the norm. Thusthe norms of the original and the diagonal matries are the same. Suppose the olumns of the matries arerearranged so that the diagonal elements of B are in desending order. Let D̃ be the matrix with olumns r+1to N equal to zero. The matrix
B̃ = UD̃V H (13)will have the following important property. No other matrix of rank r will be loser to B than B̃ . That is,

‖B − B̃‖ =

√

√

√

√

N
∑

i=r+1

d2i (14)is minimum for all matries of rank r . Thus, depending on the distribution of the diagonal elements of thetransformed matrix B, a matrix of redued rank may be found whih is loser to the original matrix than theerror in the terms (with loseness measured in terms of the Frobenius norm). From an experimental point ofview, the rank of the original matrix is no larger than that of the redued matrix.The mathematial tehnique for studying dimensionality as a funtion of the auray of the measurementswill be omplete if a tehnique an he found for alulating the diagonal elements in the matrix D. The valuesof the diagonal elements an be alulated by using the singular value deomposition theorem. They are theeigenvalues of the matrix B. Numerial tehniques for alulating the singular value deomposition are disussedin the literature (Klema and Laub 1980).



Table 1. Singular Values for Biologial Materialsn Singular Value1 .9482 .3183 .00364 .0006635 .0004126 .0002397 .0002128 .0001489 .0000361
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Figure 2. Error vs. number of funtions in the basis set for biologial materials. The error was omputed using the SVDas disussed in the text.5. APPLICATIONS OF THE SVD TO THE DIMENSIONALITY OF X-RAYATTENUATION COEFFICIENT SPACEAs desribed in the two previous setions, any disussion of the dimensionality of a representation of attenuationoe�ients must onsider the auray of the measurement tehnique. The dimensionality will also depend onother fators suh as the set of elements in the objet and the X-ray energy region. In this setion, quantitativeresults are presented for the dimensionality of the attenuation oe�ients of biologial objets in a omputedtomography system.The matrix tools in the previous setion, inluding the singular value deomposition and the onepts ofmatrix norms, will be applied as follows. First, tabulated values of the attenuation oe�ient of various elementsare plaed in a matrix. The SVD of this matrix is then alulated. By setting entries in the diagonal matrixequal to zero, the losest approximating matrix of a given rank to the original matrix will be alulated aswell as the distane between the two matries. This distane an then be plotted as a funtion of the rank ofthe approximating matrix and ompared to the expeted error in the measurements. The results are based onalulations using tabulated values of the X-ray linear attenuation oe�ients from several soures (Veigele 1973and MMaster et al. 1969). The numerial tehniques are based on the algorithms developed by Golub andReinsh (1970) and implemented in the omputer software pakage EISPACK.Table 1 shows the singular values for a matrix ontaining the attenuation oe�ients of elements with atominumbers (1,6,7,8,15,16,17,19,20). These span the range of elements ommonly found in biologial materials. Theattenuation oe�ients are alulated for a set of energies (30 to 150 keV) that also span the range used in
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Figure 3. Errors with a two funtion basis set vs the number of di�erent elements in the material. The elements are thosefound in signi�ant quantities in biologial materials, whih were used in Table 1.medial radiographi appliations. These are plotted in Figure 2. Note that the sale is logarithmi so the �rsttwo values are muh larger than the rest of the values. As disussed in the previous setion, this implies that atwo funtion basis set an give an aurate approximation of the values of all the elements in Table 1.5.1 Dimensionality Versus Atomi Number RangeAn important onsideration is the e�et on the dimensionality of the range of atomi numbers in the set ofhemial elements that we are approximating. This was alulated by adding new olumns representing theattenuation oe�ients of elements with inreasing atomi number to the data matrix and then alulating thesingular value deomposition of eah of these data matries. The mean relative error with a two funtion basisset, omputed using Equation (14), is shown as a funtion of the range of atomi numbers in Figure 3. Sinethere is a small atomi number dependene of the interation ross- setions, the errors would be expeted toinrease. As shown, they inrease somewhat as the range beomes larger. However, the inrease in errors issmall so a two funtion set provides a good approximation. For the omplete set of elements and the spei�edX-ray energy range, the average relative error with a two funtion basis set is .004. In CT, this orresponds to4 Houns�eld Units (HU) and this is less than or omparable to the error introdued by X-ray quantum noise.5.2 Dimensionality versus Energy RangeAs the range of energies inreases, the dimensionality would also be expeted to inrease. If the range does notenompass K-edges or regions (suh as that greater than 2mec
2) where pair-prodution beomes important, theinrease should not be large. These intuitive onsiderations are supported by the data in Figure 4. This plots themean relative error as a funtion of energy range. The upper energy was �xed at 500 keV while the lower energywas varied. Thus at the lower energies in the plot the range is larger. The data set ontained the biologialelement set used in Figure 2.5.3 Dimensionality with K-edge in Energy RangeIf the energy range ontains a disontinuity in the attenuation oe�ient of one of the elements, the results aresubstantially di�erent. Figure 5 shows the singular values for a set of elements inluding iodine for an energyrange from 30 to 150 keV. Note that this range inludes the K-edge of iodine at 33.2 keV. The dimensionality ofthe spae is now equal to three for even moderate auraies.
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Figure 4. Error with a two funtion basis set vs. x-ray energy range. The range is the maximum minus the minimumx-ray energy.
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Figure 5. Singular values with K-edge in energy range. Note that now three funtions are required.
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function 1
function 2Figure 6. Optimal basis set funtions. These funtions result in the minimum error in approximating the attenuationoe�ients with two funtions.5.4 DisussionThe results presented in this setion indiate that the dimensionality of x-ray attenuation spae is equal totwo even for the auraies ahieved in omputed tomography. Although the use of a broader energy range orthe inlusion of high atomi number materials inreases the errors with a two funtion basis set, these are stillsubstantially less than the errors due to quantum noise. Thus, for almost all uses in medial radiography

µ(E) = a1f1(E) + a2f2(E) (15)where f1(E) and f2(E) are attenuation oe�ients of elements with atomi numbers similar to those found inthe body.Two details of the alulations should be onsidered. The most important is the e�et of errors in the data.Although the data used are onsidered to be the most aurate available, they still ontain errors. While theseerrors probably would not a�et the onlusions, they may hange the numerial values of the smaller singularvalues. Another onsideration is the e�et of energy sampling. Theoretially, the attenuation oe�ients shouldbe onsidered to be ontinuous funtions of energy while our results are based on samples. The e�et of thesesamples was studied by inreasing the number while keeping the energy range �xed. For a large enough numberof samples, the results onverged to a single set of singular values. A su�ient number of energy samples wasused so that the results should be lose to those with a very large number of samples.6. THE OPTIMAL BASIS SET FUNCTIONSAs disussed previously the SVD gives the optimal approximating matrix of a given rank to the original matrix.By studying equation (12), it is lear that the optimal basis funtions are the �rst r olumns of the matrix
U . Figure 6 is a plot of the �rst two olumns of this matrix. SineU is unitary, the olumns are orthogonal.These two olumns an be onsidered to be samples of the optimal basis set funtions at the energies used in theattenuation oe�ient matrix.7. VECTOR SPACE DESCRIPTIONS OF MIXTURES AND LINE INTEGRALSA linear vetor spae representation allows simple geometrial representations to be used to desribe the attenu-ation of mixtures and line integrals. This model onsists of a set of rules for manipulating the oe�ients diretlywithout regard for the energy funtions. These rules are derived in this setion.
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Figure 7. Vetor interpretation of the basis set oe�ients of a mixture.The fundamental law is the mixture rule. By this rule, the total, linear attenuation oe�ient µ is related tothe attenuation oe�ients of the onstituents by
µ

ρ
=

N
∑

i=1

Wi

µi

ρi
(16)where ρis the overall density, Wi is the fration by weight of element i in the mixture and ρi is its density.Thus, if the basis set oe�ients for the elements in the mixture are (a1i, a2i) then the basis set oe�ientsfor the mixture are:

a1 =
N
∑

i=1

Wi

ρ

ρi
a1i (17)

a2 =

N
∑

i=2

Wi

ρ

ρi
a2i (18)This an be onsidered to be a weighted vetor sum and given a graphial interpretation as shown in Figure 7.The line integrals of a mixture have a similar interpretation. The line integral of an inhomogeneous objet is

L(E) =

∫

µ(x, y, z;E)ds (19)Introduing the vetor spae desription of the attenuation oe�ient, the line integral is
L(E) = f1(E)

∫

a1(x, y, z)ds+ f2(E)

∫

a2(x, y, z)ds (20)Denoting the line integrals of the basis set oe�ients as A1 and A2 the line integral is then
L(E) = A1f1(E) +A2f2(E) (21)
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Figure 8. Vetor interpretation of line integrals of basis set oe�ients for a mixture.If the objet is omposed of a single material with oe�ients (a1, a2) and has a thikness l the line integralswill be
A1 = a1l (22)and
A2 = a2l. (23)If it is omposed of several materials in di�erent regions with oe�ients (a1i, a2i) and thiknesses li , the lineintegrals are

A1 =

N
∑

i=1

a1ili (24)and
A2 =

N
∑

i=1

a2ili. (25)An objet modeled to be a mixture of several materials with the ratio of the amounts of the materials varyinggives similar results. In any ase, due to the linear nature of the vetor spae model and the sum rule, the totalline integrals an also be modeled to be weighted vetor sums of the line integrals of the materials in the objet.This is illustrated in Figure 8.8. THE CALIBRATION MATERIAL BASIS SETNote that the results of the previous setions are independent of any parameterization of the ross setions forthe various interations. All that is neessary is that the attenuation oe�ient of a given element be expressibleas a linear ombination of the attenuation oe�ient of other elements. Sine the attenuation oe�ients ofreal materials are a linear ombination of the attenuation oe�ients of their elements (by the mixture rule)



Table 2. Auray of Calibration Material Basis SetZ a1 a2 rms frational error (%)1 2.2298 -0.27396 0.290262 1.1211 -0.13334 0.179173 0.96715 -0.10971 0.091644 0.98483 -0.10255 0.06525 1.0087 -0.08729 0.032546 1.0557 -0.05785 0.027717 1 0 08 0.92372 0.08147 0.020359 0.76582 0.18902 0.0650110 0.6782 0.33074 0.0936211 0.47834 0.49541 0.1248312 0.28195 0.72698 0.1873813 0 1 2e-00514 -0.31465 1.3321 0.2997715 -0.68005 1.6622 0.3805116 -1.0716 2.1168 0.1464117 -1.6213 2.6063 0.3000518 -1.9095 2.8529 0.2229419 -2.7208 3.7283 0.28720 -3.3678 4.5083 0.40408and sine the attenuation oe�ients of the elements are a linear ombination of two elements, the attenuationoe�ient funtion of any two distint materials an be used as a basis set (Alvarez 1976). This approah ispreferable to a parameterization approah for two reasons. First, it is more aurate for a given dimensionality.Seond, it allows alibration of the solution of equations for the energy seletive information to be in terms oflengths instead of omplex measurements based on attenuation oe�ients.The use of a real material basis set is more aurate than the parametrization approah beause it removeserrors due to inauraies in the expressions for the energy dependene of the interations (Lehmann 1982). Therelative auray of these approahes is illustrated in Table 2. This shows the root mean square (rms) frationalerror in �tting the mass attenuation oe�ients (Veigele 1973) of elements with atomi numbers from 1 to 30.The real material basis set used the attenuation oe�ients of nitrogen and phosphorus (atomi numbers 7 and15) as the basis funtions. The basis set oe�ients were determined by least squares �tting to the data. Thiswas ompared to the e�etive atomi number and eletron density parameterizations of MCullough (1975) andRutherford (1976). Note that for all elements tested the real material basis set had smaller errors.The use of a real material attenuation oe�ient basis set has important pratial advantages in the alibrationproedure used to solve for the energy-seletive information. Suppose the attenuation oe�ient funtions of thealibration materials themselves are used as the basis set (Alvarez 1976). Then the basis set oe�ients in thealibration phantom are simply zero or one.
µ1(E) = 1 ∗ f1(E) + 0 ∗ f2(E) (26)
µ2(E) = 0 ∗ f1(E) + 1 ∗ f2(E). (27)The line integrals of the basis set oe�ients are then just the thiknesses of the alibration materials alongthe path of the X-ray beam. That is

A1 =

N
∑

i=1

ai1li (28)



with a similar result for A2 . Sine the auray of the information extration tehnique (Alvarez and Maov-ski 1976) rests on the measurement of these line integrals, this transformation of the line integrals to lengthmeasurements substantially improves the quantitative usefulness of the tehnique.9. CALCULATION OF LINE INTEGRAL ∫

µ(X,Y,Z : E)DS FROM A SINGLEMEASUREMENTX-ray imaging systems do not measure the attenuation oe�ient diretly. Rather, they measure the �uxtransmitted through the objet. Negleting satter and assuming an in�nitesimally narrow beam, the �ux isgiven by
I =

∫

S(E)e−L(E)dE (29)where S(E) is the energy spetral density of the soure, and L(E) =
∫

µ(x, y, z : E)ds is the line integral ofthe linear attenuation oe�ient. In many quantitative appliations, suh as omputed tomography and digitalradiography, it is desired to alulate the line integral at a single energy from the �ux. in this setion, we showthat, even if the spetrum is known, this is not possible exept in speial irumstanes. The best that anbe done in a pratial linial situation is an approximation whih will be aurate only under a limited set ofonditions.Using the vetor spae desription of the attenuation oe�ient, the line integral at a single energy E is
L(E0) = A1f1(E0) +A2f2(E0) (30)For a given energy, the basis funtions f1(E0) and f2(E0) are onstant and the problem of the alulation of aline integral may be generalized mathematially as follows: Is there any way to alulate a linear ombinationof the line integrals of the basis set oe�ients from a single �ux measurement? The following theorem answersthis question.If the spetrum is not monoenergeti and if the objet onsists of more than one material, thenan invertible funtion g(I) does not exist suh that

g(I) = k1A1 + k2A2 (31)where k1and k2are onstants.By the disussion above, this theorem inludes the alulation of the line integral as a speial ase.First, onsider the speial ase of an objet known to onsist of a single material. In this ase the �ux an beused to alulate the line integrals. These are given by equation (22) and the objet vetors are onstrained tolie along a straight line passing through the origin of the vetor spae. The �ux is a funtion only of the materialthikness l
I(A1, A2) = I(l) =

∫

S(E)exp(−a1l

[

f1(E) +
a2

a1
f2(E)

]

)dE (32)Note that (a1, a2) are onstants for the single material ase.The derivative
dI

dl
= −

∫

[a1f1(E) + a2f2(E)]S(E)exp(−a1l

[

f1(E) +
a2

a1
f2(E)

]

)dE (33)is always less than zero sine S(E) and the attenuation oe�ient
µ(E) = [a1f1(E) + a2f2(E)] (34)



are always greater than zero. Thus the �ux is a monotonially dereasing funtion of the material thikness andthe �ux an be used to alulate the thikness l (and therefore the line integral).The proof of the impossibility for the general material ase is in two steps. First, we show that if the invertiblefuntion g exists the ontour urves of I(A1, A2) must be straight lines. Next we show that these ontour urvesare not straight lines thus proving the result by ontradition. For the �rst part of the proof, onsider theomposite funtion h(A1, A2) = g[I(A1, A2)]. If g exists then
h(A1, A2) = k1A1 + k2A2 (35)where k1and k2are onstants. The funtion g is invertible so, if h(A1, A2) is equal to a onstant c then I(A1, A2)is equal to the unique onstant g(c) on this line whih then must be a ontour urve of I(A1, A2). Thus if g(I)exists the ontour urves of I are straight lines.The proof that the ontour urves of I(A1, A2) are not straight lines rests on the fat that the basis funtions

f1(E) andf2(E) are linearly independent. The equation of the ontour urves is
c =

∫

S(E)exp [−A1f1(E)−A2f2(E)] dE (36)Di�erentiating this expression impliitly gives the value of the slope of the ontour urve through any point
(A1, A2).

dA2

dA1
= −

∫

f2(E)S(E)exp [−A1f1(E)−A2f2(E)] dE
∫

f1(E)S(E)exp [−A1f1(E)−A2f2(E)] dE
. (37)If the ontour is a straight line, then this slope must be a onstant and equal to, say, α along the line A2 = αA1+β.That is,

dA2

dA1
= α = −

∫

f2(E)S(E)exp [−A1f1(E)− (αA1 + β)f(E)] dE
∫

f1(E)S(E)exp [−A1f1(E)− (αA1 + β)f(E)] dE
(38)for all A1. Multiplying by the integral in the denominator and gathering terms on one side of the equation showsthat if the ontours are straight lines, then

∫

[αf1(E) + f2(E)]S(E)exp [−A1f1(E)− (αA1 + β)f(E)] dE = 0. (39)Sine this must be true for all A1, if the spetrum S(E) (whih is non-negative) is not a delta funtion, thenthere exists a onstant a, suh that
αf1(E) + f2(E) = 0 (40)for all energies E. That is, if the ontour urves are straight lines, then the basis funtions are linearly dependent.This is not true, so the ontour urves of I(A1, A2) are not straight lines and the proof is ompleted.It is instrutive to onsider the monoenergeti spetrum ase where S(E)is a delta funtion, say δ(E − E0).In that ase, the ontour urves of I(A1, A2) are straight lines with slope
dA2

dA1
= −

f2(E0)

f1(E0)
. (41)This does not imply that the basis funtions are linearly dependent sine equation (41) has to be satis�ed onlyat one energy.Although the theorem just presented shows that, in general, a linearizing funtion does not exist, there maybe ases where a good approximate linearizing funtion an be de�ned (Alvarez 1976). In omputed tomography,errors in estimating the line integral result in beam hardening artifats and tehniques have evolved to minimizethese errors (Stonestrom et al. 1980). One possibility is to have a spetrum whih is near to monoenergeti. This



an be ahieved by pre�ltering the inident beam. Another possibility is to use a water bath so that the e�etiveobjet attenuation approahes a single material ase. The most omplex approahes use information from all theprojetions along with a-priori models of body tissue omposition to alulate orreted line integrals. Althoughthese tehniques redue the artifat problem, they will only work under speialized irumstanes and will fail ifthe objet does not �t their assumptions.10. INVERTIBILITY OF THE DUAL ENERGY EQUATIONSThe previous setion demonstrated that the line integral an not be alulated from a single �ux measurement. Inthis setion we show that under quite general onditions omplete energy dependent X-ray attenuation informa-tion, i.e., the attenuation at any energy in the diagnosti region, an be alulated from two �ux measurementswith di�erent soure spetra. This is done by deriving a proedure to alulate the line integrals of the basis setoe�ients A1 and A2. In a single projetion system these an be used with Equation (21) to alulate the lineintegral at any energy. In a CT system the line integrals an be reonstruted to give ross setional images ofthe value of the basis set oe�ients, Then using the fundamental vetor spae deomposition the attenuationoe�ient an be alulated at any energy. In either ase, the results represent all the information whih an beinferred from X-ray attenuation measurements.Using the expression for the attenuation oe�ient line integral L(E), (21) in the equation for the transmitted�ux (29), shows that the �ux is a funtion of two independent variables, A1 and A2 (the soure spetrum isassumed to be onstant). Sine there are two variables this single measurement annot in general be invertedto yield the line integrals. However, suppose another measurement is made with a di�erent e�etive sourespetrum. This ould be e�eted either by using an energy resolving detetor or by varying the spetrum byswithing the X-ray tube voltage. This gives two funtional relationships
I1(A1, A2) =

∫

S1(E)exp[−A1f1(E) −A2f2(E)]dE (42)
I2(A1, A2) =

∫

S2(E)exp[−A1f1(E) −A2f2(E)]dE (43)and therefore de�nes a transformation between the measured quantities (I1, I2) and the desired quantities
(A1, A2). An important question is under what onditions this transformation is invertible.Before disussing the situation in general, two simple but important ases will be disussed. The �rst aseis the use of two monoenergeti spetra with energies E1 and E2. In this ase the �ux measurement an belinearized by taking the logarithm of the �ux measurements (42). The result is that the logarithms of themeasurements and the line integrals are related by the linear equations

log

[

I1

I10

]

= −A1f1(E1)−A2f2(E1) (44)
log

[

I2

I20

]

= −A1f1(E2)−A2f2(E2) (45)where I10 and I20 are the measurements with zero objet thikness. These equations an be solved uniquely forthe line integrals if the determinant of the oe�ients is not equal to zero:
∣

∣

∣

∣

f1(E1) f2(E1)
f1(E2) f2(E2)

∣

∣

∣

∣

6= 0 (46)That is if
f1(E1)

f2(E1)
6=

f1(E2)

f2(E2)
(47)
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Figure 9. Ratio of optimal basis set funtions. Sine the ratio is not onstant, the ondition in Equation 47 is satis�ed.Figure 9 shows a plot of the ratio of the basis set funtions versus energy in the medial diagnosti region. Notethat the ratio is monotonially dereasing. Thus, the ondition in equation (47) will be true if the two energiesare di�erent.Another useful speial ase is when the objet is known to onsist of a single material. As disussed in theprevious setion, a single �ux measurement su�es if the exat omposition is known. The thikness an bealulated as previously disussed and equation (22) an then be used to alulate the line integrals. For thegeneral ase, the following theorem is useful (Fulks 1969 page 284):Let F be a ontinuously di�erentiable mapping de�ned on an open region D in E2, with range Rin E2 , and lets its Jaobian be never zero in D. Suppose further that C is a simple losed urve that,together with its interior (reall the Jordan urve theorem), lies in D, and that F is one-to-one on C.Then the image T of C is a simple losed urve that, together with its interior, lies in R. Furthermore,F is one-to-one on the losed region onsisting of C and its interior, so that the inverse transformationan be de�ned on the losed region onsisting of T and its interior.whih I paraphrase asIf the Jaobian of a ontinuously di�erentiable two dimensional mapping is nonzero throughoutan open region D and if the mapping is one to one on a simple losed urve C whih lies in D, thenthe mapping is one to one on C and its interior.By using this theorem the following result an be established:If two spetra with di�erent maximum energies and suh that suitably de�ned average energies ofthe spetra transmitted through an objet are not equal over a region of the (A1, A2)plane ontainingthe points for the objet, then the two �ux measurements (given by equation (42) ) an be used touniquely alulate the values of the line integrals.In order to establish this result using the previously quoted theorem the Jaobian must be shown to be nonzerothroughout a region in the (A1, A2) plane and the transformation must be shown to be invertible on a losedsimple urve in this region. The region shown in Figure 10 will be used. It onsists of the �rst quadrant of theplane. This is a region of theoretial and pratial importane beause a basis set onsisting of the attenuation
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Figure 10. Closed ontour used in proof of invertibility. The ontour onsists of the two axes, drawn slightly o�set toshow the ontour, and a large portion of a irle to lose it.oe�ients of the alibration materials is usually used, Sine only positive equivalent thiknesses of the alibrationmaterials an be used, this region must ontain all the measured values. The losed urve will onsist of the axesand a portion of a irle (with a large radius so that all points in the objet are inluded) entered on the originjoining the axes. This urve is also shown in Figure 10.Instead of using the �ux measurement diretly, suppose the logarithm of the �ux is used. The results willbe equivalent so long as the �ux is greater than zero. With the log, the omponents of the Jaobian of thetransformation are
Jij = −

∫

fj(E)Si(E)exp[−A1f1(E)− A2f2(E)]dE
∫

Si(E)exp[−A1f1(E)−A2f2(E)]dE
i, j = 1, 2 (48)Note that by de�ning two normalized spetra

Si(E) =
Si(E)exp[−A1f1(E)−A2f2(E)]

∫

Si(E)exp[−A1f1(E)−A2f2(E)]dE
i = 1, 2 (49)the Jaobian an be written as

J =

[

− < f1 >1 − < f2 >1

− < f1 >2 − < f2 >2

] (50)where <>i denotes the average using the normalized spetrum Si(E). Thus the ondition for the Jaobian notbeing zero is equivalent to
< f1 >1

< f2 >1
6=

< f1 >2

< f2 >2
. (51)This ondition must be tested for individual spetra.In order to omplete the proof of invertibility, the transformation must be shown to be invertible on a losedurve in the domain. The simply ases disussed at the beginning of this setion may be used for this proof.The parts of the urve along the axes are speial ases of the single material ase. By the previous results,



these ases are invertible. The irle of large radius is an approximation of the single energy ase. For largeradius there will be high attenuation. With beam hardening, the transmitted spetrum with large attenuationapproahes a monoenergeti spetrum at the maximum energy in the spetrum. If the maximum is di�erentfor eah spetrum, we an approah the known invertible monoenergeti ase arbitrarily losely by making theradius larger and larger.If the Jaobian an be shown to be non-zero throughout a region of line integral values inluding those of theobjet, then these results guarantee that the �ux measurements an be inverted to give the line integral values.Consider x-ray tube voltage swithing as an example. In the tube spetrum, the maximum energy is the tubevoltage times the eletron harge. So, if the two voltages are di�erent, these results imply that the equations willbe invertible to ompute the line integrals from the transmitted �uxes with the two voltages. The line integralsare all the information that an be produed by a single projetion system. If a CT system is used then theline integrals an be reonstruted to give the values of the basis set oe�ients in the objet's ross-setion.Tehniques for extrating medially useful information from these line integrals or oe�ients will be disussedin the seond paper in this series (Alvarez and Lehmann 1982).11. CONCLUSIONSThe X-ray linear attenuation oe�ient as a funtion of energy an be aurately desribed by a vetor spaemodel. The auray of this desription depends on the number of funtions in the basis set. By using thesingular value deomposition theorem of matrix algebra, the dependene of the errors on the dimensionalityof the spae an be quanti�ed. For an energy range whih does not inlude disontinuities in the attenuationoe�ient, a two funtion basis set provides exellent auray.The vetor spae deomposition has many important uses. It provides a theoretial framework for under-standing the e�et of energy dependent attenuation on onventional X-ray systems. These results have importantimpliations for quantitative X-ray systems suh as omputed tomography and digital �uorosopy. The vetorspae formulation an also be used to design and analyze systems whih extrat energy dependent information.This inludes both energy-seletive omputed tomography and digital radiography systems.12. REFERENCESAgarwal BK 1979 X-Ray Spetrosopy (New York:Springer Verlag).Alvarez RE 1976 PhD Dissertation, Dept. of Eletrial Engineering, Stanford University, Stanford, California.Alvarez RE and LehmannLA 1982 Phys. Med. Biol., this issue.Alvarez RE and Maovski A 1976 Phys. Med. Biol., 21, 733-744.Alvarez RE and Seppi E 1979 IEEE Trans. Nu. Si., NS-26, 2853- 2856.Fulks W 1969, Advaned Calulus 2nd Ed. (New York:Wiley).Golub GH and Reinsh C 1970 Numer. Math. 14, 403-420.Golub GH, Klema V. Stewart GW 1976 Rank Degeneray and Least Squares Problems, (Stanford UniversityDept. of Computer Siene Teh. Rept. TR-456).Hawkes DJ and Jakson DF 1980 Phys. Med. BioI. 25,1167-1171.Klema VC and Laub AJ 1990 IEEE Trans. Auto. Control, AC-25, 164-176.Lehmann LA 1982 PhD Dissertation, Dept. of Eletrial Engineering, StanfordUniversity, Stanford, California.MCullough EC 1975 Med. Phys. 2, 307-320.MMaster WH, DelGrande NK, Mallett JH, Hubbell JH 1989 Compilation of X-RayCross Setions (UCRL 50174 Se II Rev 1) (Spring�eld, VA: National TehnialInformation Servie).
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