
Energy Dependent Information in X-Ray Imaging:

Part 1. The Vector Space DescriptionRobert E. AlvarezABSTRACTThe energy spe
trum of X-rays transmitted through the body 
ontains important information. This information
an be extra
ted by using a ve
tor spa
e des
ription of the attenuation 
oe�
ient as a fun
tion of energy.The des
ription is 
onsistent with X-ray physi
s and is extremely a

urate. The a

ura
y versus the numberof fun
tions in the basis set is quanti�ed by using a mathemati
al formulation based on the singular valuede
omposition. This shows that a two fun
tion basis set gives su�
ient a

ura
y for 
omputed tomography andother quantitative medi
al appli
ations. The ve
tor spa
e formulation 
an be used to prove that, in general,the line integral of the attenuation 
oe�
ient 
annot be 
al
ulated from a single spe
trum transmitted �uxmeasurement. However, 
omplete energy dependent information 
an be 
al
ulated from two �ux measurementswith di�erent e�e
tive sour
e spe
tra. 1. INTRODUCTIONEnergy-sele
tive te
hniques have a long history in X-ray physi
s, but it is only in re
ent times that the useof a

urate dete
tors and 
omputers has allowed this essentially numeri
al information to be extra
ted in animaging system. The introdu
tion of quantitative te
hniques into X-ray imaging ne
essitates the development ofa �rm theoreti
al foundation for the extra
tion of the information. That is the purpose of this series of papers.There are several requirements for this theoreti
al formulation. First, it should be 
onsistent with the knownphysi
s of the intera
tions of X-rays and matter. Se
ond, it should be appli
able within the theory of X-rayimaging te
hniques whi
h is primarily based on linear systems. A formulation is des
ribed in this paper whi
hsatis�es both of these 
riteria and in addition is simple and e
onomi
al. This formulation uses a ve
tor spa
edes
ription of X-ray attenuation 
oe�
ients as a fun
tion of energy.In the �rst paper this ve
tor spa
e des
ription is introdu
ed and rigorously justi�ed. It is shown to be
onsistent with known X-ray physi
s and to represent the attenuation 
oe�
ient to an a

ura
y su�
ient for eventhe most demanding medi
al appli
ations su
h as 
omputed tomography. Previous work (Alvarez and Ma
ovski1976) justi�ed the a

ura
y on physi
al grounds. In this paper we introdu
e a mathemati
al formulation whi
h
omputes the a

ura
y as a fun
tion of the number of dimensions of the spa
e. This formulation 
an then be usedto study questions su
h as the e�e
t of the X-ray energy range and the atomi
 number range on the representationa

ura
y. The ve
tor spa
e theory is used to fundamentally analyze the information available from a single broadspe
trum measurement as in 
onventional radiography. We show that, in general, this single measurement 
annot be used to 
al
ulate the line integral of the attenuation 
oe�
ient. Next, we show that an energy sele
tivesystem using two broad spe
trum measurements 
an extra
t 
omplete energy dependent information under quitegeneral 
onditions.2. DESCRIPTIONS OF X-RAY ATTENUATION COEFFICIENTSAlthough there are important nonlinearities, the des
ription of X-ray imaging systems is based on linear theory.Linear systems 
on
epts su
h as point spread fun
tion and modulation transfer fun
tion have proven invaluableunderstanding X-ray systems. Any te
hnique for extra
ting energy dependent information must be linear if it isto utilize this powerful linear systems foundation.The fundamental physi
al quantity des
ribing the obje
t, measured by an X-ray imaging system, is the linearattenuation 
oe�
ient If this is known, then the data measured by the system 
an be predi
ted. Single proje
tionsystems (su
h as used in 
onventional radiography) measure the line integral of the attenuation 
oe�
ient while
omputed tomography systems measure the attenuation 
oe�
ient at points in the obje
t 
ross se
tion.



While the use of linear te
hniques may seem obvious, some nonlinear te
hniques for extra
ting this informationhave been introdu
ed. These are the parameterization te
hniques (Rutherford, et al. 1976). These te
hniquesattempt to extra
t information by using a parametri
 model of the linear attenuation 
oe�
ients of the elementsas a fun
tion of atomi
 number, ele
tron density, and X-ray energy. The approa
h has several problems. First,it is di�
ult to derive a

urate parametri
 expressions whi
h are valid for the elements and energy range ofinterest (Hawkes and Ja
kson 1980). Any errors in these expressions will lead to errors in the 
al
ulation of theparameters. Se
ond, and more fundamentally, it is di�
ult to rigorously generalize these expressions to realisti

ases. The models use parameters (su
h as e�e
tive atomi
 number) whi
h are inherently nonlinearizable in themeasured data. Be
ause of this problem, even as simple a situation as a mixture of elements requires an arbitraryde�nition of average, or e�e
tive, parameters whi
h is di�
ult to justify on physi
al grounds. As eviden
e of thisdi�
ulty, several papers based on this approa
h have used di�erent expressions for the e�e
tive atomi
 number(M
Cullough 1975 and Rutherford, et al. 1976).Ve
tor spa
e te
hniques expand the attenuation 
oe�
ient as a linear 
ombination of known fun
tions ofenergy multiplied by undetermined 
oe�
ients.
µ(E) =

∞
∑

i=1

aifi(E) (1)Sin
e the 
oe�
ients are the only unknown values in the expression, they 
arry all the information whi
h willbe extra
ted by the imaging system. The systems des
ribed in this paper measure these basis set 
oe�
ientswhi
h are obviously linearly related to the fundamental physi
al quantity, the linear attenuation 
oe�
ient.Furthermore, if the attenuation 
oe�
ient varies with position, the ve
tor spa
e expansion will be
µ(x, y, z;E) =

∞
∑

i=1

ai(x, y, z)fi(E) (2)This linear separation of the e�e
ts into position-dependent and energy dependent parts �ts in naturally withlinear systems theory and 
an be readily applied to X-ray imaging systems.The 
hoi
e of basis fun
tions fi(E) is 
ru
ial to this te
hnique. Sin
e the attenuation 
oe�
ient is smoothex
ept for a 
ountable number of dis
ontinuities, a suitable set 
an be found. However, this set 
ould 
ontaina very large number of fun
tions whi
h would make it useless for any pra
ti
al appli
ation. Fortunately, asdis
ussed in the next se
tions, the minimum number of required fun
tions (the �dimensionality� of the spa
e) isa
tually quite small.3. PHYSICAL CONSTRAINTS ON DIMENSIONALITYThe dimensionality of the ve
tor spa
e is an important property of the physi
al quantity being imaged. Itdetermines the 
omplexity of the pro
edure for extra
ting the energy dependent information sin
e the higher thedimensionality, the more 
omplex the pro
edure. Conversely, the 
oe�
ients of the basis fun
tions 
ompletelyspe
ify the attenuation 
oe�
ient. Thus, they represent all that 
an be dedu
ed about the obje
t from X-rayattenuation measurements.There are several important physi
al properties whi
h must be in
orporated in any des
ription of the X-rayattenuation 
oe�
ient. One of these, the �mixture rule,� states that the 
ross se
tion for X-ray intera
tionsof an atom is independent of its 
hemi
al state. This is, of 
ourse, not exa
tly true. A whole �eld of X-rayspe
tros
opy (Agarwal 1979) is 
on
erned with extra
ting information about the 
hemi
al properties from these
hanges. However, these e�e
ts are 
on�ned to (at most) a few keV from an absorption edge. Sin
e most biologi
almaterials have their absorption edges at energies substantially below those of interest in medi
al radiographythis e�e
t 
an be ignored. A notable ex
eption is iodine in the thyroid and 
ontrast agents. These are highatomi
 number materials with K-edges within the medi
al region. The 
hemi
al e�e
ts are still quite small butthey may a�e
t high pre
ision measurements (and be the basis for sensitive in-vivo analysis).



With the mixture rule, the linear attenuation 
oe�
ient 
an be expressed as
µ(E) =

N
∑

i=1

niσi(E) (3)where ni is the number of atoms per unit volume, and σi(E) is the total 
ross se
tion at energyE for element
i. This result is important for several reasons. First, it implies that the dimensionality of attenuation 
oe�
ientspa
e is less than or equal to the number of distin
t elements within the obje
t. For biologi
al obje
ts this is arelatively small number. Se
ond, sin
e the attenuation 
oe�
ient of any material is a linear 
ombination of theattenuation 
oe�
ients of its 
onstituent elements, it, in turn, is a suitable 
andidate for a basis fun
tion. Thisresult will be used in later dis
ussions.Another important physi
al prin
iple whi
h 
an be applied is the �sum rule� for the various X-ray intera
tions.Sin
e X-ray photons may be 
onsidered to be dis
rete, the various types of intera
tions are independent andmutually ex
lusive. The total probability of not intera
ting is the produ
t of the probabilities of not undergoinga parti
ular type of intera
tion, so, for a parti
ular element, the total 
ross se
tion is the sum of the 
ross se
tionsfor ea
h type of intera
tion. There are many possible types of intera
tions, but for energies in the diagnosti
spe
trum, three types predominate: Compton s
attering, photoele
tri
 absorption, and Rayleigh (
oherent)s
attering. Expressions 
an be derived whi
h give these 
ross se
tions as a fun
tion of atomi
 number andenergy. If these 
ross se
tions were separable into multipli
ative fa
tors whi
h were fun
tions of atomi
 numberonly and energy only, then this would imply that the dimensionality is smaller than the total number of elements.That is, if the 
ross se
tion for an element i is

σi(E) = σc(E,Zi) + σP (E,Zi) + σR(E,Zi) + . . . (4)and
σC(E,Z) = KC(Z)fC(E) (5)
σP (E,Z) = KP (Z)fP (E) (6)
σR(E,Z) = KR(Z)fR(E) (7)then

µ(E) =

[

N
∑

i=1

niKC(Zi)

]

fC(E) +

[

N
∑

i=1

niKP (Zi)

]

fP (E) +

[

N
∑

i=1

niKR(Zi)

]

fR(E) + . . . (8)Equation. 8 implies that if the expressions are separable, the dimensionality of the ve
tor spa
e is equal to thenumber of di�erent types of intera
tions.In order to study the separability, the 
ross se
tions 
an be plotted on a logarithmi
 plot. With separableexpressions, the 
urves for di�erent elements will be parallel. Figure 1 shows su
h a plot for the photoele
tri
intera
tion. Although the 
urves are not parallel, they are 
lose to it. Similar results would be obtained for othertypes of intera
tions.These results indi
ate that, with measurements of su�
ient pre
ision, the e�e
ts of individual elements 
ouldbe resolved. For less a

urate measurements, the 
hanges with atomi
 number would not be resolvable andthe dimensionality of the spa
e would be less than the number of elements. The dimensionality must then be
onsidered to be a fun
tion of measurement a

ura
y. Mathemati
al te
hniques for quantifying this observationare dis
ussed in the next se
tion.
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ross-se
tion. The 
urves would be parallel if the 
ross se
tions for all elements wererepresented by a 
ommon fun
tional form.4. THE SINGULAR VALUE DECOMPOSITIONThe mathemati
al tools whi
h will be used to study the dimensionality as a fun
tion of measurement a

ura
yare based on matrix theory. The reason for the appli
ability of this theory is that the dimensionality of the spa
eis 
losely related to the rank of a matrix. An important appli
ation of the Singular Value De
omposition is todetermine the rank of a matrix whose elements are known to 
ontain errors. This same tool will be applied inthis se
tion to study the dimensionality of attenuation 
oe�
ient spa
e as a fun
tion of measurement a

ura
y.Consider a matrix whose 
olumns are the values of the attenuation 
oe�
ients of various elements at manyenergies in the medi
al diagnosti
 range. If the elements found in biologi
al materials are in
luded, then, bythe mixture rule, the 
olumns will span the spa
e of attenuation 
oe�
ients of body materials. That is, theattenuation 
oe�
ient of any biologi
al material 
an be expressed as a linear 
ombination of the 
olumns of thematrix.Analogous to the dis
ussion in the previous se
tion, if the entries in the matrix are 
onsidered to be of in�nitepre
ision, almost all matri
es will have full rank (that is, the rank is equal to the smaller of the number ofrows or 
olumns). However, in any physi
al situation, the matrix entries (the measurements of the attenuation
oe�
ient) will have limited a

ura
y. In this 
ase, another matrix with less than full rank may be found whi
his �
lose� to the original matrix. If the �distan
e� between the matri
es is less than the a

ura
y of the entriesof the original matrix, then the rank of the original matrix is equal to the rank of the approximating matrix tothe spe
i�ed a

ura
y. This is the 
on
ept of numeri
al rank (Stewart 1973) whi
h will be applied to des
ribedimensionality of the attenuation 
oe�
ient spa
e as a fun
tion of measurement a

ura
y.In order to de�ne �
loseness�, a matrix norm must be introdu
ed. This is a s
alar fun
tion of the elementsof the matrix whi
h is a measure of its size. The norm will be applied to measure the di�eren
e between thefull rank matrix and its lower rank approximating matrix. There are many 
andidates for a norm fun
tion. Any
omputationally 
onvenient fun
tion 
an be 
hosen so long as it satis�es the ne
essary properties of de�niteness,homogeneity, and the triangle inequality. A 
onvenient norm 
an be de�ned by reasoning by analogy with ave
tor norm. The 2-norm for a ve
tor V with 
omponents vi and dimension N is
‖V ‖ =

√

√

√

√

N
∑

i=1

v2i . (9)



The analogous norm for a matrix is 
alled the Frobenius norm. For a matrix B with elements bij and dimensions
M by N the norm is

‖B‖ =

√

√

√

√

M
∑

i=1

N
∑

j=1

b2ij (10)A matrix norm de�ned in this way has all the desirable properties outlined above (Stewart 1973).The di�eren
e between in�nite pre
ision and numeri
al rank 
an be understood by 
onsidering a diagonalmatrix, D. The in�nite pre
ision rank for this matrix is equal to the number of non-zero entries. The numeri
alrank 
an also be determined from these values. In order to do this, the diagonal entries with small absolute value
an be repla
ed by zeros. The limited a

ura
y rank will be equal to the number of rows or 
olumns minus thenumber of entries dropped. If the entries are in numeri
al order and those in 
olumns r + 1 to N are set equalto zero, the di�eren
e between the limited a

ura
y D̃ and full pre
ision matri
es D, is equal to
‖D − D̃‖ =

√

√

√

√

N
∑

i=r+1

d2i (11)If this distan
e divided by the number of entries is small 
ompared to the error in ea
h of the members, then thenumeri
al rank of the original matrix is equal to the rank of the redu
ed matrix.Suppose the matrix of interest B is not diagonal. In this 
ase, the singular value de
omposition theorem maybe applied to transform this 
ase to the diagonal matrix 
ase just des
ribed. A

ording to this theorem, thereexist unitary matri
es U and V su
h that
B = UDV H . (12)where D is a diagonal matrix and V H is the 
omplex 
onjugate of the transpose of V .Sin
e U and V are unitary matri
es, multiplying by them does not 
hange the value of the norm. Thusthe norms of the original and the diagonal matri
es are the same. Suppose the 
olumns of the matri
es arerearranged so that the diagonal elements of B are in des
ending order. Let D̃ be the matrix with 
olumns r+1to N equal to zero. The matrix
B̃ = UD̃V H (13)will have the following important property. No other matrix of rank r will be 
loser to B than B̃ . That is,

‖B − B̃‖ =

√

√

√

√

N
∑

i=r+1

d2i (14)is minimum for all matri
es of rank r . Thus, depending on the distribution of the diagonal elements of thetransformed matrix B, a matrix of redu
ed rank may be found whi
h is 
loser to the original matrix than theerror in the terms (with 
loseness measured in terms of the Frobenius norm). From an experimental point ofview, the rank of the original matrix is no larger than that of the redu
ed matrix.The mathemati
al te
hnique for studying dimensionality as a fun
tion of the a

ura
y of the measurementswill be 
omplete if a te
hnique 
an he found for 
al
ulating the diagonal elements in the matrix D. The valuesof the diagonal elements 
an be 
al
ulated by using the singular value de
omposition theorem. They are theeigenvalues of the matrix B. Numeri
al te
hniques for 
al
ulating the singular value de
omposition are dis
ussedin the literature (Klema and Laub 1980).



Table 1. Singular Values for Biologi
al Materialsn Singular Value1 .9482 .3183 .00364 .0006635 .0004126 .0002397 .0002128 .0001489 .0000361
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Figure 2. Error vs. number of fun
tions in the basis set for biologi
al materials. The error was 
omputed using the SVDas dis
ussed in the text.5. APPLICATIONS OF THE SVD TO THE DIMENSIONALITY OF X-RAYATTENUATION COEFFICIENT SPACEAs des
ribed in the two previous se
tions, any dis
ussion of the dimensionality of a representation of attenuation
oe�
ients must 
onsider the a

ura
y of the measurement te
hnique. The dimensionality will also depend onother fa
tors su
h as the set of elements in the obje
t and the X-ray energy region. In this se
tion, quantitativeresults are presented for the dimensionality of the attenuation 
oe�
ients of biologi
al obje
ts in a 
omputedtomography system.The matrix tools in the previous se
tion, in
luding the singular value de
omposition and the 
on
epts ofmatrix norms, will be applied as follows. First, tabulated values of the attenuation 
oe�
ient of various elementsare pla
ed in a matrix. The SVD of this matrix is then 
al
ulated. By setting entries in the diagonal matrixequal to zero, the 
losest approximating matrix of a given rank to the original matrix will be 
al
ulated aswell as the distan
e between the two matri
es. This distan
e 
an then be plotted as a fun
tion of the rank ofthe approximating matrix and 
ompared to the expe
ted error in the measurements. The results are based on
al
ulations using tabulated values of the X-ray linear attenuation 
oe�
ients from several sour
es (Veigele 1973and M
Master et al. 1969). The numeri
al te
hniques are based on the algorithms developed by Golub andReins
h (1970) and implemented in the 
omputer software pa
kage EISPACK.Table 1 shows the singular values for a matrix 
ontaining the attenuation 
oe�
ients of elements with atomi
numbers (1,6,7,8,15,16,17,19,20). These span the range of elements 
ommonly found in biologi
al materials. Theattenuation 
oe�
ients are 
al
ulated for a set of energies (30 to 150 keV) that also span the range used in
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Figure 3. Errors with a two fun
tion basis set vs the number of di�erent elements in the material. The elements are thosefound in signi�
ant quantities in biologi
al materials, whi
h were used in Table 1.medi
al radiographi
 appli
ations. These are plotted in Figure 2. Note that the s
ale is logarithmi
 so the �rsttwo values are mu
h larger than the rest of the values. As dis
ussed in the previous se
tion, this implies that atwo fun
tion basis set 
an give an a

urate approximation of the values of all the elements in Table 1.5.1 Dimensionality Versus Atomi
 Number RangeAn important 
onsideration is the e�e
t on the dimensionality of the range of atomi
 numbers in the set of
hemi
al elements that we are approximating. This was 
al
ulated by adding new 
olumns representing theattenuation 
oe�
ients of elements with in
reasing atomi
 number to the data matrix and then 
al
ulating thesingular value de
omposition of ea
h of these data matri
es. The mean relative error with a two fun
tion basisset, 
omputed using Equation (14), is shown as a fun
tion of the range of atomi
 numbers in Figure 3. Sin
ethere is a small atomi
 number dependen
e of the intera
tion 
ross- se
tions, the errors would be expe
ted toin
rease. As shown, they in
rease somewhat as the range be
omes larger. However, the in
rease in errors issmall so a two fun
tion set provides a good approximation. For the 
omplete set of elements and the spe
i�edX-ray energy range, the average relative error with a two fun
tion basis set is .004. In CT, this 
orresponds to4 Houns�eld Units (HU) and this is less than or 
omparable to the error introdu
ed by X-ray quantum noise.5.2 Dimensionality versus Energy RangeAs the range of energies in
reases, the dimensionality would also be expe
ted to in
rease. If the range does noten
ompass K-edges or regions (su
h as that greater than 2mec
2) where pair-produ
tion be
omes important, thein
rease should not be large. These intuitive 
onsiderations are supported by the data in Figure 4. This plots themean relative error as a fun
tion of energy range. The upper energy was �xed at 500 keV while the lower energywas varied. Thus at the lower energies in the plot the range is larger. The data set 
ontained the biologi
alelement set used in Figure 2.5.3 Dimensionality with K-edge in Energy RangeIf the energy range 
ontains a dis
ontinuity in the attenuation 
oe�
ient of one of the elements, the results aresubstantially di�erent. Figure 5 shows the singular values for a set of elements in
luding iodine for an energyrange from 30 to 150 keV. Note that this range in
ludes the K-edge of iodine at 33.2 keV. The dimensionality ofthe spa
e is now equal to three for even moderate a

ura
ies.



0 100 200 300 400 500
0

1

2

3

4

5

6

7
x 10

−3

Energy range(keV)

R
el

at
iv

e 
er

ro
r 

w
ith

 tw
o 

fu
nc

tio
n 

ba
si

s 
se

t

Figure 4. Error with a two fun
tion basis set vs. x-ray energy range. The range is the maximum minus the minimumx-ray energy.
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Figure 5. Singular values with K-edge in energy range. Note that now three fun
tions are required.
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function 1
function 2Figure 6. Optimal basis set fun
tions. These fun
tions result in the minimum error in approximating the attenuation
oe�
ients with two fun
tions.5.4 Dis
ussionThe results presented in this se
tion indi
ate that the dimensionality of x-ray attenuation spa
e is equal totwo even for the a

ura
ies a
hieved in 
omputed tomography. Although the use of a broader energy range orthe in
lusion of high atomi
 number materials in
reases the errors with a two fun
tion basis set, these are stillsubstantially less than the errors due to quantum noise. Thus, for almost all uses in medi
al radiography

µ(E) = a1f1(E) + a2f2(E) (15)where f1(E) and f2(E) are attenuation 
oe�
ients of elements with atomi
 numbers similar to those found inthe body.Two details of the 
al
ulations should be 
onsidered. The most important is the e�e
t of errors in the data.Although the data used are 
onsidered to be the most a

urate available, they still 
ontain errors. While theseerrors probably would not a�e
t the 
on
lusions, they may 
hange the numeri
al values of the smaller singularvalues. Another 
onsideration is the e�e
t of energy sampling. Theoreti
ally, the attenuation 
oe�
ients shouldbe 
onsidered to be 
ontinuous fun
tions of energy while our results are based on samples. The e�e
t of thesesamples was studied by in
reasing the number while keeping the energy range �xed. For a large enough numberof samples, the results 
onverged to a single set of singular values. A su�
ient number of energy samples wasused so that the results should be 
lose to those with a very large number of samples.6. THE OPTIMAL BASIS SET FUNCTIONSAs dis
ussed previously the SVD gives the optimal approximating matrix of a given rank to the original matrix.By studying equation (12), it is 
lear that the optimal basis fun
tions are the �rst r 
olumns of the matrix
U . Figure 6 is a plot of the �rst two 
olumns of this matrix. Sin
eU is unitary, the 
olumns are orthogonal.These two 
olumns 
an be 
onsidered to be samples of the optimal basis set fun
tions at the energies used in theattenuation 
oe�
ient matrix.7. VECTOR SPACE DESCRIPTIONS OF MIXTURES AND LINE INTEGRALSA linear ve
tor spa
e representation allows simple geometri
al representations to be used to des
ribe the attenu-ation of mixtures and line integrals. This model 
onsists of a set of rules for manipulating the 
oe�
ients dire
tlywithout regard for the energy fun
tions. These rules are derived in this se
tion.
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Figure 7. Ve
tor interpretation of the basis set 
oe�
ients of a mixture.The fundamental law is the mixture rule. By this rule, the total, linear attenuation 
oe�
ient µ is related tothe attenuation 
oe�
ients of the 
onstituents by
µ

ρ
=

N
∑

i=1

Wi

µi

ρi
(16)where ρis the overall density, Wi is the fra
tion by weight of element i in the mixture and ρi is its density.Thus, if the basis set 
oe�
ients for the elements in the mixture are (a1i, a2i) then the basis set 
oe�
ientsfor the mixture are:

a1 =
N
∑

i=1

Wi

ρ

ρi
a1i (17)

a2 =

N
∑

i=2

Wi

ρ

ρi
a2i (18)This 
an be 
onsidered to be a weighted ve
tor sum and given a graphi
al interpretation as shown in Figure 7.The line integrals of a mixture have a similar interpretation. The line integral of an inhomogeneous obje
t is

L(E) =

∫

µ(x, y, z;E)ds (19)Introdu
ing the ve
tor spa
e des
ription of the attenuation 
oe�
ient, the line integral is
L(E) = f1(E)

∫

a1(x, y, z)ds+ f2(E)

∫

a2(x, y, z)ds (20)Denoting the line integrals of the basis set 
oe�
ients as A1 and A2 the line integral is then
L(E) = A1f1(E) +A2f2(E) (21)
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A2

L1
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Figure 8. Ve
tor interpretation of line integrals of basis set 
oe�
ients for a mixture.If the obje
t is 
omposed of a single material with 
oe�
ients (a1, a2) and has a thi
kness l the line integralswill be
A1 = a1l (22)and
A2 = a2l. (23)If it is 
omposed of several materials in di�erent regions with 
oe�
ients (a1i, a2i) and thi
knesses li , the lineintegrals are

A1 =

N
∑

i=1

a1ili (24)and
A2 =

N
∑

i=1

a2ili. (25)An obje
t modeled to be a mixture of several materials with the ratio of the amounts of the materials varyinggives similar results. In any 
ase, due to the linear nature of the ve
tor spa
e model and the sum rule, the totalline integrals 
an also be modeled to be weighted ve
tor sums of the line integrals of the materials in the obje
t.This is illustrated in Figure 8.8. THE CALIBRATION MATERIAL BASIS SETNote that the results of the previous se
tions are independent of any parameterization of the 
ross se
tions forthe various intera
tions. All that is ne
essary is that the attenuation 
oe�
ient of a given element be expressibleas a linear 
ombination of the attenuation 
oe�
ient of other elements. Sin
e the attenuation 
oe�
ients ofreal materials are a linear 
ombination of the attenuation 
oe�
ients of their elements (by the mixture rule)



Table 2. A

ura
y of Calibration Material Basis SetZ a1 a2 rms fra
tional error (%)1 2.2298 -0.27396 0.290262 1.1211 -0.13334 0.179173 0.96715 -0.10971 0.091644 0.98483 -0.10255 0.06525 1.0087 -0.08729 0.032546 1.0557 -0.05785 0.027717 1 0 08 0.92372 0.08147 0.020359 0.76582 0.18902 0.0650110 0.6782 0.33074 0.0936211 0.47834 0.49541 0.1248312 0.28195 0.72698 0.1873813 0 1 2e-00514 -0.31465 1.3321 0.2997715 -0.68005 1.6622 0.3805116 -1.0716 2.1168 0.1464117 -1.6213 2.6063 0.3000518 -1.9095 2.8529 0.2229419 -2.7208 3.7283 0.28720 -3.3678 4.5083 0.40408and sin
e the attenuation 
oe�
ients of the elements are a linear 
ombination of two elements, the attenuation
oe�
ient fun
tion of any two distin
t materials 
an be used as a basis set (Alvarez 1976). This approa
h ispreferable to a parameterization approa
h for two reasons. First, it is more a

urate for a given dimensionality.Se
ond, it allows 
alibration of the solution of equations for the energy sele
tive information to be in terms oflengths instead of 
omplex measurements based on attenuation 
oe�
ients.The use of a real material basis set is more a

urate than the parametrization approa
h be
ause it removeserrors due to ina

ura
ies in the expressions for the energy dependen
e of the intera
tions (Lehmann 1982). Therelative a

ura
y of these approa
hes is illustrated in Table 2. This shows the root mean square (rms) fra
tionalerror in �tting the mass attenuation 
oe�
ients (Veigele 1973) of elements with atomi
 numbers from 1 to 30.The real material basis set used the attenuation 
oe�
ients of nitrogen and phosphorus (atomi
 numbers 7 and15) as the basis fun
tions. The basis set 
oe�
ients were determined by least squares �tting to the data. Thiswas 
ompared to the e�e
tive atomi
 number and ele
tron density parameterizations of M
Cullough (1975) andRutherford (1976). Note that for all elements tested the real material basis set had smaller errors.The use of a real material attenuation 
oe�
ient basis set has important pra
ti
al advantages in the 
alibrationpro
edure used to solve for the energy-sele
tive information. Suppose the attenuation 
oe�
ient fun
tions of the
alibration materials themselves are used as the basis set (Alvarez 1976). Then the basis set 
oe�
ients in the
alibration phantom are simply zero or one.
µ1(E) = 1 ∗ f1(E) + 0 ∗ f2(E) (26)
µ2(E) = 0 ∗ f1(E) + 1 ∗ f2(E). (27)The line integrals of the basis set 
oe�
ients are then just the thi
knesses of the 
alibration materials alongthe path of the X-ray beam. That is

A1 =

N
∑

i=1

ai1li (28)



with a similar result for A2 . Sin
e the a

ura
y of the information extra
tion te
hnique (Alvarez and Ma
ov-ski 1976) rests on the measurement of these line integrals, this transformation of the line integrals to lengthmeasurements substantially improves the quantitative usefulness of the te
hnique.9. CALCULATION OF LINE INTEGRAL ∫

µ(X,Y,Z : E)DS FROM A SINGLEMEASUREMENTX-ray imaging systems do not measure the attenuation 
oe�
ient dire
tly. Rather, they measure the �uxtransmitted through the obje
t. Negle
ting s
atter and assuming an in�nitesimally narrow beam, the �ux isgiven by
I =

∫

S(E)e−L(E)dE (29)where S(E) is the energy spe
tral density of the sour
e, and L(E) =
∫

µ(x, y, z : E)ds is the line integral ofthe linear attenuation 
oe�
ient. In many quantitative appli
ations, su
h as 
omputed tomography and digitalradiography, it is desired to 
al
ulate the line integral at a single energy from the �ux. in this se
tion, we showthat, even if the spe
trum is known, this is not possible ex
ept in spe
ial 
ir
umstan
es. The best that 
anbe done in a pra
ti
al 
lini
al situation is an approximation whi
h will be a

urate only under a limited set of
onditions.Using the ve
tor spa
e des
ription of the attenuation 
oe�
ient, the line integral at a single energy E is
L(E0) = A1f1(E0) +A2f2(E0) (30)For a given energy, the basis fun
tions f1(E0) and f2(E0) are 
onstant and the problem of the 
al
ulation of aline integral may be generalized mathemati
ally as follows: Is there any way to 
al
ulate a linear 
ombinationof the line integrals of the basis set 
oe�
ients from a single �ux measurement? The following theorem answersthis question.If the spe
trum is not monoenergeti
 and if the obje
t 
onsists of more than one material, thenan invertible fun
tion g(I) does not exist su
h that

g(I) = k1A1 + k2A2 (31)where k1and k2are 
onstants.By the dis
ussion above, this theorem in
ludes the 
al
ulation of the line integral as a spe
ial 
ase.First, 
onsider the spe
ial 
ase of an obje
t known to 
onsist of a single material. In this 
ase the �ux 
an beused to 
al
ulate the line integrals. These are given by equation (22) and the obje
t ve
tors are 
onstrained tolie along a straight line passing through the origin of the ve
tor spa
e. The �ux is a fun
tion only of the materialthi
kness l
I(A1, A2) = I(l) =

∫

S(E)exp(−a1l

[

f1(E) +
a2

a1
f2(E)

]

)dE (32)Note that (a1, a2) are 
onstants for the single material 
ase.The derivative
dI

dl
= −

∫

[a1f1(E) + a2f2(E)]S(E)exp(−a1l

[

f1(E) +
a2

a1
f2(E)

]

)dE (33)is always less than zero sin
e S(E) and the attenuation 
oe�
ient
µ(E) = [a1f1(E) + a2f2(E)] (34)



are always greater than zero. Thus the �ux is a monotoni
ally de
reasing fun
tion of the material thi
kness andthe �ux 
an be used to 
al
ulate the thi
kness l (and therefore the line integral).The proof of the impossibility for the general material 
ase is in two steps. First, we show that if the invertiblefun
tion g exists the 
ontour 
urves of I(A1, A2) must be straight lines. Next we show that these 
ontour 
urvesare not straight lines thus proving the result by 
ontradi
tion. For the �rst part of the proof, 
onsider the
omposite fun
tion h(A1, A2) = g[I(A1, A2)]. If g exists then
h(A1, A2) = k1A1 + k2A2 (35)where k1and k2are 
onstants. The fun
tion g is invertible so, if h(A1, A2) is equal to a 
onstant c then I(A1, A2)is equal to the unique 
onstant g(c) on this line whi
h then must be a 
ontour 
urve of I(A1, A2). Thus if g(I)exists the 
ontour 
urves of I are straight lines.The proof that the 
ontour 
urves of I(A1, A2) are not straight lines rests on the fa
t that the basis fun
tions

f1(E) andf2(E) are linearly independent. The equation of the 
ontour 
urves is
c =

∫

S(E)exp [−A1f1(E)−A2f2(E)] dE (36)Di�erentiating this expression impli
itly gives the value of the slope of the 
ontour 
urve through any point
(A1, A2).

dA2

dA1
= −

∫

f2(E)S(E)exp [−A1f1(E)−A2f2(E)] dE
∫

f1(E)S(E)exp [−A1f1(E)−A2f2(E)] dE
. (37)If the 
ontour is a straight line, then this slope must be a 
onstant and equal to, say, α along the line A2 = αA1+β.That is,

dA2

dA1
= α = −

∫

f2(E)S(E)exp [−A1f1(E)− (αA1 + β)f(E)] dE
∫

f1(E)S(E)exp [−A1f1(E)− (αA1 + β)f(E)] dE
(38)for all A1. Multiplying by the integral in the denominator and gathering terms on one side of the equation showsthat if the 
ontours are straight lines, then

∫

[αf1(E) + f2(E)]S(E)exp [−A1f1(E)− (αA1 + β)f(E)] dE = 0. (39)Sin
e this must be true for all A1, if the spe
trum S(E) (whi
h is non-negative) is not a delta fun
tion, thenthere exists a 
onstant a, su
h that
αf1(E) + f2(E) = 0 (40)for all energies E. That is, if the 
ontour 
urves are straight lines, then the basis fun
tions are linearly dependent.This is not true, so the 
ontour 
urves of I(A1, A2) are not straight lines and the proof is 
ompleted.It is instru
tive to 
onsider the monoenergeti
 spe
trum 
ase where S(E)is a delta fun
tion, say δ(E − E0).In that 
ase, the 
ontour 
urves of I(A1, A2) are straight lines with slope
dA2

dA1
= −

f2(E0)

f1(E0)
. (41)This does not imply that the basis fun
tions are linearly dependent sin
e equation (41) has to be satis�ed onlyat one energy.Although the theorem just presented shows that, in general, a linearizing fun
tion does not exist, there maybe 
ases where a good approximate linearizing fun
tion 
an be de�ned (Alvarez 1976). In 
omputed tomography,errors in estimating the line integral result in beam hardening artifa
ts and te
hniques have evolved to minimizethese errors (Stonestrom et al. 1980). One possibility is to have a spe
trum whi
h is near to monoenergeti
. This




an be a
hieved by pre�ltering the in
ident beam. Another possibility is to use a water bath so that the e�e
tiveobje
t attenuation approa
hes a single material 
ase. The most 
omplex approa
hes use information from all theproje
tions along with a-priori models of body tissue 
omposition to 
al
ulate 
orre
ted line integrals. Althoughthese te
hniques redu
e the artifa
t problem, they will only work under spe
ialized 
ir
umstan
es and will fail ifthe obje
t does not �t their assumptions.10. INVERTIBILITY OF THE DUAL ENERGY EQUATIONSThe previous se
tion demonstrated that the line integral 
an not be 
al
ulated from a single �ux measurement. Inthis se
tion we show that under quite general 
onditions 
omplete energy dependent X-ray attenuation informa-tion, i.e., the attenuation at any energy in the diagnosti
 region, 
an be 
al
ulated from two �ux measurementswith di�erent sour
e spe
tra. This is done by deriving a pro
edure to 
al
ulate the line integrals of the basis set
oe�
ients A1 and A2. In a single proje
tion system these 
an be used with Equation (21) to 
al
ulate the lineintegral at any energy. In a CT system the line integrals 
an be re
onstru
ted to give 
ross se
tional images ofthe value of the basis set 
oe�
ients, Then using the fundamental ve
tor spa
e de
omposition the attenuation
oe�
ient 
an be 
al
ulated at any energy. In either 
ase, the results represent all the information whi
h 
an beinferred from X-ray attenuation measurements.Using the expression for the attenuation 
oe�
ient line integral L(E), (21) in the equation for the transmitted�ux (29), shows that the �ux is a fun
tion of two independent variables, A1 and A2 (the sour
e spe
trum isassumed to be 
onstant). Sin
e there are two variables this single measurement 
annot in general be invertedto yield the line integrals. However, suppose another measurement is made with a di�erent e�e
tive sour
espe
trum. This 
ould be e�e
ted either by using an energy resolving dete
tor or by varying the spe
trum byswit
hing the X-ray tube voltage. This gives two fun
tional relationships
I1(A1, A2) =

∫

S1(E)exp[−A1f1(E) −A2f2(E)]dE (42)
I2(A1, A2) =

∫

S2(E)exp[−A1f1(E) −A2f2(E)]dE (43)and therefore de�nes a transformation between the measured quantities (I1, I2) and the desired quantities
(A1, A2). An important question is under what 
onditions this transformation is invertible.Before dis
ussing the situation in general, two simple but important 
ases will be dis
ussed. The �rst 
aseis the use of two monoenergeti
 spe
tra with energies E1 and E2. In this 
ase the �ux measurement 
an belinearized by taking the logarithm of the �ux measurements (42). The result is that the logarithms of themeasurements and the line integrals are related by the linear equations

log

[

I1

I10

]

= −A1f1(E1)−A2f2(E1) (44)
log

[

I2

I20

]

= −A1f1(E2)−A2f2(E2) (45)where I10 and I20 are the measurements with zero obje
t thi
kness. These equations 
an be solved uniquely forthe line integrals if the determinant of the 
oe�
ients is not equal to zero:
∣

∣

∣

∣

f1(E1) f2(E1)
f1(E2) f2(E2)

∣

∣

∣

∣

6= 0 (46)That is if
f1(E1)

f2(E1)
6=

f1(E2)

f2(E2)
(47)
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Figure 9. Ratio of optimal basis set fun
tions. Sin
e the ratio is not 
onstant, the 
ondition in Equation 47 is satis�ed.Figure 9 shows a plot of the ratio of the basis set fun
tions versus energy in the medi
al diagnosti
 region. Notethat the ratio is monotoni
ally de
reasing. Thus, the 
ondition in equation (47) will be true if the two energiesare di�erent.Another useful spe
ial 
ase is when the obje
t is known to 
onsist of a single material. As dis
ussed in theprevious se
tion, a single �ux measurement su�
es if the exa
t 
omposition is known. The thi
kness 
an be
al
ulated as previously dis
ussed and equation (22) 
an then be used to 
al
ulate the line integrals. For thegeneral 
ase, the following theorem is useful (Fulks 1969 page 284):Let F be a 
ontinuously di�erentiable mapping de�ned on an open region D in E2, with range Rin E2 , and lets its Ja
obian be never zero in D. Suppose further that C is a simple 
losed 
urve that,together with its interior (re
all the Jordan 
urve theorem), lies in D, and that F is one-to-one on C.Then the image T of C is a simple 
losed 
urve that, together with its interior, lies in R. Furthermore,F is one-to-one on the 
losed region 
onsisting of C and its interior, so that the inverse transformation
an be de�ned on the 
losed region 
onsisting of T and its interior.whi
h I paraphrase asIf the Ja
obian of a 
ontinuously di�erentiable two dimensional mapping is nonzero throughoutan open region D and if the mapping is one to one on a simple 
losed 
urve C whi
h lies in D, thenthe mapping is one to one on C and its interior.By using this theorem the following result 
an be established:If two spe
tra with di�erent maximum energies and su
h that suitably de�ned average energies ofthe spe
tra transmitted through an obje
t are not equal over a region of the (A1, A2)plane 
ontainingthe points for the obje
t, then the two �ux measurements (given by equation (42) ) 
an be used touniquely 
al
ulate the values of the line integrals.In order to establish this result using the previously quoted theorem the Ja
obian must be shown to be nonzerothroughout a region in the (A1, A2) plane and the transformation must be shown to be invertible on a 
losedsimple 
urve in this region. The region shown in Figure 10 will be used. It 
onsists of the �rst quadrant of theplane. This is a region of theoreti
al and pra
ti
al importan
e be
ause a basis set 
onsisting of the attenuation
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Figure 10. Closed 
ontour used in proof of invertibility. The 
ontour 
onsists of the two axes, drawn slightly o�set toshow the 
ontour, and a large portion of a 
ir
le to 
lose it.
oe�
ients of the 
alibration materials is usually used, Sin
e only positive equivalent thi
knesses of the 
alibrationmaterials 
an be used, this region must 
ontain all the measured values. The 
losed 
urve will 
onsist of the axesand a portion of a 
ir
le (with a large radius so that all points in the obje
t are in
luded) 
entered on the originjoining the axes. This 
urve is also shown in Figure 10.Instead of using the �ux measurement dire
tly, suppose the logarithm of the �ux is used. The results willbe equivalent so long as the �ux is greater than zero. With the log, the 
omponents of the Ja
obian of thetransformation are
Jij = −

∫

fj(E)Si(E)exp[−A1f1(E)− A2f2(E)]dE
∫

Si(E)exp[−A1f1(E)−A2f2(E)]dE
i, j = 1, 2 (48)Note that by de�ning two normalized spe
tra

Si(E) =
Si(E)exp[−A1f1(E)−A2f2(E)]

∫

Si(E)exp[−A1f1(E)−A2f2(E)]dE
i = 1, 2 (49)the Ja
obian 
an be written as

J =

[

− < f1 >1 − < f2 >1

− < f1 >2 − < f2 >2

] (50)where <>i denotes the average using the normalized spe
trum Si(E). Thus the 
ondition for the Ja
obian notbeing zero is equivalent to
< f1 >1

< f2 >1
6=

< f1 >2

< f2 >2
. (51)This 
ondition must be tested for individual spe
tra.In order to 
omplete the proof of invertibility, the transformation must be shown to be invertible on a 
losed
urve in the domain. The simply 
ases dis
ussed at the beginning of this se
tion may be used for this proof.The parts of the 
urve along the axes are spe
ial 
ases of the single material 
ase. By the previous results,



these 
ases are invertible. The 
ir
le of large radius is an approximation of the single energy 
ase. For largeradius there will be high attenuation. With beam hardening, the transmitted spe
trum with large attenuationapproa
hes a monoenergeti
 spe
trum at the maximum energy in the spe
trum. If the maximum is di�erentfor ea
h spe
trum, we 
an approa
h the known invertible monoenergeti
 
ase arbitrarily 
losely by making theradius larger and larger.If the Ja
obian 
an be shown to be non-zero throughout a region of line integral values in
luding those of theobje
t, then these results guarantee that the �ux measurements 
an be inverted to give the line integral values.Consider x-ray tube voltage swit
hing as an example. In the tube spe
trum, the maximum energy is the tubevoltage times the ele
tron 
harge. So, if the two voltages are di�erent, these results imply that the equations willbe invertible to 
ompute the line integrals from the transmitted �uxes with the two voltages. The line integralsare all the information that 
an be produ
ed by a single proje
tion system. If a CT system is used then theline integrals 
an be re
onstru
ted to give the values of the basis set 
oe�
ients in the obje
t's 
ross-se
tion.Te
hniques for extra
ting medi
ally useful information from these line integrals or 
oe�
ients will be dis
ussedin the se
ond paper in this series (Alvarez and Lehmann 1982).11. CONCLUSIONSThe X-ray linear attenuation 
oe�
ient as a fun
tion of energy 
an be a

urately des
ribed by a ve
tor spa
emodel. The a

ura
y of this des
ription depends on the number of fun
tions in the basis set. By using thesingular value de
omposition theorem of matrix algebra, the dependen
e of the errors on the dimensionalityof the spa
e 
an be quanti�ed. For an energy range whi
h does not in
lude dis
ontinuities in the attenuation
oe�
ient, a two fun
tion basis set provides ex
ellent a

ura
y.The ve
tor spa
e de
omposition has many important uses. It provides a theoreti
al framework for under-standing the e�e
t of energy dependent attenuation on 
onventional X-ray systems. These results have importantimpli
ations for quantitative X-ray systems su
h as 
omputed tomography and digital �uoros
opy. The ve
torspa
e formulation 
an also be used to design and analyze systems whi
h extra
t energy dependent information.This in
ludes both energy-sele
tive 
omputed tomography and digital radiography systems.12. REFERENCESAgarwal BK 1979 X-Ray Spe
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