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1. An overview of the thesis

1.1. Introduction

A conventional single projection medical x-ray imaging system is shown in Fig. 1.1. This
system is used in a large number of radiological examinations and is, perhaps, the ap-
paratus that comes to mind when medical radiography is mentioned. The purpose of the
system is to form an image of the x-ray shadows cast by the various parts of the body.
It consists of three main parts: an x-ray tube, which is the source of x-ray photons; a
collimating grid, which removes scattered photons so the image consists primarily of the
photons which have not interacted with the body, and an imaging detector, which is usually
a film screen cassette.

Although this system is widely used, it does not completely extract the information
present in the transmitted x-ray photons. Rather, the information is an average value
over both depth and x-ray energy. Spatially, it is an average value because the output is
the projection of the transmission of a three-dimensional object onto a two-dimensional
image. It is an average in energy because the transmission at any point is a function of
x-ray energy. The image represents the transmission at a single average energy and thus
ignores the information that can be extracted by making measurements at many different
energies.

The averaging processes can be a serious limitation in many applications. Because of
the spatial averaging, structures of interest are many times shadowed by other objects
within the same line of sight. Also, the projection process makes it difficult to visualize
subtle variations of the size or density of a large object. The averaging over energy re-
moves significant information from the image. For example, a lesion exhibiting a high
attenuation could have either a high density or be composed of a material with a relatively
high average atomic number. By using energy dependent measurements, these two alter-
natives can be distinguished. The extra information gained by removing these averaging
processes could have important clinical significance.

Recently, a highly successful technique has been introduced which removes the spatial
averaging. This technique, known as computerized tomography [Ambrose and Hounsfield
1973], forms an image of a slice through an object by making measurements at many
different positions and angles around the object and processing the measurements on
a computer. Other forms of tomography had existed previously but none removed the
spatial averaging completely. Their effect was to blur the contribution of objects not in
the desired slice. Computerized tomography gives an accurate image of a slice through

6



1. An overview of the thesis

Source
S(E) object

µ(x,y,z;E)

I

Figure 1.1.: Single projection medical x-ray imaging system. The x-ray flux at a point on
the detector is I =

∫
S(E)exp

[
−
∫
µ(x, y, z;E)ds

]
dE

a cross section of an object. Using this technique, radiologists have been able to see
objects that had never been seen in a transmission x-ray image. Although it was recently
introduced, this technique has had a significant impact on medical radiology.

This thesis describes techniques for extracting energy dependent information and, thus,
removing the remaining averaging process. It will be shown that an image of the energy
dependent information contains a significantly greater amount of useful data than an im-
age which represents a single average energy. The usefulness of a technique to extract
this information depends on factors such as the complexity of the system and the required
patient dose. It will be shown that relatively simple measurements are sufficient to ex-
tract the information completely and that the resultant patient dose is comparable to that
resulting from a conventional examination.

1.2. Previous Work in Extraction of Energy Dependent
Information

There has been relatively little work in the extraction of energy dependent information.
The work has been concentrated in three main areas: K edge techniques, imaging with
radioisotope sources, and techniques based on changing x-ray tube voltage.

As early as 1925, Glocker and Frohnmayer used K edge techniques to increase the
contrast of a specific element. The operation of this method may be understood by con-

7



1. An overview of the thesis

0 50 100 150
0

1

2

Energy (keV)

lin
ea

r 
at

te
nu

at
io

n 
co

ef
fic

ie
nt

 (
cm

−
1)

U
W
Pb

Figure 1.2.: Plot of the linear attenuation coefficients of several elements (W, Pb, U) show-
ing their discontinuous behavior

sidering the attenuation coefficient function of energy of a typical element. As shown in
Fig. 1.2, this is a decreasing function except at certain energies where the attenuation
coefficient suddenly increases. These energies are characteristic of the element. The
highest energy discontinuity is called the K edge. It is evident that, if the transmission is
measured at energies just above and just below the K edge, only regions containing the
specific element of interest will show a large change. By taking the difference between
the transmissions, the contrast of this element can be greatly increased.

Various systems have been developed which use the K edge technique. In the 1950’s
Jacobson [Jacobson, 1958] developed a system capable of imaging the iodine in the thy-
roid gland. This was an elaborate system using analog electronics and containing wedges
of material which had to be adjusted at each point in the image. Although accurate, it was
apparently too slow to be useful in a clinical situation. Recently, Mistretta and others [Mis-
tretta, et. al., 1974] have also introduced a system for K edge imaging. The system uses
a highly filtered x-ray tube source and television techniques to produce an accurate differ-
ence image. The system is still in the experimental stage. Under controlled circumstances
it has shown the capability of imaging 1-2 mg/cm2 of iodine.

Other than iodine, the elements occurring in the body in larger than trace amounts
have K edges below 10 Key. The body transmission at these energies is so low that the
technique cannot be applied. An accurate measurement of the transmission below and
above the K edge would require a very large dose. Iodine, however, is an important case
not only because it is naturally occurring but because it is used in many contrast materials.

Even at energies above the K edge, body materials have sufficiently different attenu-
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1. An overview of the thesis

ation coefficient functions of energy so that energy dependent measurements are very
useful. Techniques have been developed which use measurements with radioactive iso-
tope sources. These measurements are used to calculate the amount of bone calcifica-
tion [Cameron and Sorenson,1963] and the relative amount of fat and muscle [Mazess,
Cameron, Sorenson, 1970] along a straight line path through the body. The isotope
sources do not produce enough photons per second to allow an imaging detector to be
used. They are used in scanned systems.

Various techniques have been invented to extract energy dependent information in an
imaging system. These techniques have been ad hoc and almost purely experimental.

Several workers have made measurements with different x-ray tube voltages to extract
the energy dependent information. In the early 1950’s several “color” x-ray imaging sys-
tems were produced [Takahashi, 1952; Donovan, 1951; Donovan and Jones, 1951]. In
these systems, three exposures were taken with different x-ray voltages. The resultant
images could be used to expose the three layers of a color film or projected using a triple
projector with different color filters. Recently, a similar approach has been taken with com-
puterized tomography systems [Ambrose and Hounsfield, 1973; Zatz, 1976]. Two scans
are taken with different x-ray tube voltages. The technique has shown great sensitivity to
iodine contrast materials.

An interesting color x-ray imaging system is described by Jacobson and Mackay (1958).
This system utilizes the fact that x-rays with lower energies are stopped in smaller dis-
tances of a given material. A special cassette consisting of slabs of fluorescent material
which emit light of different colors and a color film is used to extract the energy dependent
information.

All these systems suffer from the lack of a sound theoretical basis. The type of informa-
tion that can be extracted is not precisely known. Thus the signal processing used must
be relatively simple and it is difficult to compare the various systems or to optimize any
particular system.

1.3. Overview of the Thesis

The techniques for the extraction of energy dependent information are presented in two
steps. First, the information that can be derived from energy dependent measurements is
discussed. It is shown that complete energy dependent information can be obtained from
low resolution measurements. Next, techniques for incorporating the necessary measure-
ments in both single projection and computerized tomography systems are described.

Chapter 2 discusses the information available from energy dependent x-ray transmis-
sion measurements. First, the physics of the interactions of x-rays and matter are summa-
rized. Next, it is shown that a set of functions, f1(E) andf2(E), exist so that for materials
with atomic number less than 20 and in the diagnostic energy region, any attenuation

9



1. An overview of the thesis

coefficient function of energy µ(E) can be expressed as

µ(E) = a1f1(E) + a2f2(E) (1.3.1)

to an accuracy better than that of an x-ray measurement. Thus the problem of extracting
energy dependent information has been transformed from one of estimating a complete
function of energy to one of estimating two constants. This provides a theoretical frame-
work for extracting energy dependent information.

Since only two constants must he estimated, low energy-resolution measurements
should be sufficient to determine these constants. In Chapter 3 we discuss the extrac-
tion of the energy dependent information from low resolution measurements. In fact, a
technique is described for gathering the information using detectors that measure the to-
tal energy or total number of the incident photons and have no energy resolution. This is
done by making measurements with two different incident spectra. A statistical model is
developed for the measurement process. This model is used to find expressions for the
errors due to the fundamental limiting noise source, Poisson counting noise.

Energy dependent information can be measured in a single projection system. Since
the system still has spatial averaging, the quantities that can be measured are the line in-
tegrals of the coefficients a1 and a2. In Chapter 4, the techniques for measuring these line
integrals are described. These techniques are used to form an image equivalent to a high
voltage radiograph but without the difficulties encountered in high energy measurements.
Also, the conditions under which an image of a particular substance can be formed are
discussed. Two experiments are described which show the validity of these ideas. One
experiment shows selective material imaging using the scanned x-ray source and detec-
tor of the EMI scanner. Another experiment shows a system to make an image of bone
only or soft tissue only. Finally, the techniques for measuring the two intensities that are
necessary to calculate the line integrals in an imaging system are summarized.

A computerized tomography system provides an excellent framework for making energy
dependent measurements because electronic rather than film detectors are used. By
using the techniques described in Chapters 3 and 4, the line integrals of the coefficients
a1 and a2 can be calculated. In chapter 5, we show that the techniques of computerized
tomography can then be used to calculate a1 and a2 at every point in the cross section
of an object. A computer simulation is used to illustrate this procedure. Expressions are
derived for the errors in the reconstructed values due to counting noise. Energy dependent
techniques can be used to avoid an important error that occurs in conventional single
average energy computerized tomography systems. This error occurs because there is
not enough information present in a single intensity measurement with a broad spectrum
source to accurately calculate the line integral of the linear attenuation coefficient. This
quantity must be calculated to carry out a reconstruction. In Chapter 6 the techniques
used in current systems to calculate the line integrals are discussed. A unified theoretical
analysis of these techniques is described which allows them to be compared and which
allows their dependence on system parameters to be derived. It is shown that the line
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1. An overview of the thesis

integral cannot be calculated from a single intensity measurement with a broad spectrum
source. Finally, we show that energy dependent techniques provide a generally applicable
accurate technique for calculating the line integral.

Chapter 7 is a summary of conclusions and final remarks. It includes suggestions for
further research.

Appendix A describes a numerical method for solving the equations relating the mea-
sured intensities to the desired line integrals of a1 and a2. The technique is a general-
ization of the well-known Newton-Raphson method to the problem of two simultaneous
equations. Appendix B describes a least squares curve fitting technique for determining
the values of a1 and a2 from experimentally measured values of the attenuation coeffi-
cient.

11



2. INFORMATION AVAILABLE FROM X-RAY
ATTENUATION MEASUREMENTS

2.1. Introduction

As described in Chapter 1, the information in a conventional radiograph represents an
averaging process over energy. In this chapter we will discuss the information that is
available from measurements at a great many energies. We will be concerned with the
information at a single point in the radiographic image. The radiologist extracts diagnos-
tically useful information from the values at any given point and from the two-dimensional
patterns of the data.

This chapter has three main parts. The types of information available depend on the
physics of the interactions of x-rays and matter. This will be discussed in the first part
of this chapter. Next, we will consider the situation from the point of view of extracting
information. This information is summarized by the linear attenuation coefficient function
of energy. We will show how to convert the problem from one of estimating a complete
function of energy to one of estimating a small number of constants independent of energy.
Finally, we will discuss some implications of this theory to medical radiography. The values
of the constants for body materials will be shown. The implications of having a two function
basis set will be discussed.

2.2. X-Ray Energies Used in Diagnostic Radiology

The interactions of electromagnetic radiation and matter are strongly dependent on the
energy of the photons. In order to study the possible types of interactions, the energy
region must be specified. The x-rays used in medical diagnostic apparatus have energies
from approximately 10 to 300 Key. This energy region is dictated mainly by the transmis-
sion properties of the body. For common body materials and thicknesses, the contrast per
unit dose has a maximum in this region [Jacobson and Mackay 1958]. The contrast C of
a radiographic system is defined to be

C =
δn

n
(2.2.1)
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2. Information From X-ray Measurements

n0

object

background

x-rays

n n+δn

L L+δL

Figure 2.1.: Quantities in the definition of contrast.

where n and δn represent numbers of photons as shown in Fig. 2.1. This definition of
contrast is useful because this quantity is equal to the change in attenuation of the object.
The attenuation τ is defined by

n = n0e
−τ (2.2.2)

where n is shown in Fig. 2.1 as the number of photons incident on the object. Differenti-
ating this expression

δn = −(n0e
−τ )δτ (2.2.3)

Thus
δτ = −δn

n
(2.2.4)

The dose (or actually the average quantity which is mean specific energy) is proportional
to the energy deposited by the photons per mass [ICRU 1971]. This is determined by the
number of photons absorbed n0 − n, the energy of each photon E, and the mass, which
is the density ρ times the volume, the product of the area A and the thickness L. Thus

D =
(n0 − n)E

ALρ
(2.2.5)

where A is x-ray cross sectional area, L is the object thickness, and p is the object mass
density.

13



2. Information From X-ray Measurements

Figure 2.2.: Contrast per unit dose as a function of energy for various body thicknesses

The quantity that should be maximized is the contrast per unit dose

C

D
=

δnALρ

n(n0 − n)E
(2.2.6)

This quantity is plotted as a function of energy in Fig. 2.2 for various thicknesses of water
which is a major body constituent. For energies below the diagnostic energy region, the
body attenuation is so large that essentially no photons are transmitted. Thus the con-
trast per unit dose becomes very small. At very low energies (in the microwave region),
the body transmission increases but the wavelength of the radiation is so large that ob-
jects of interest cannot be resolved [Macovski 1975]. At energies above the diagnostic
energy region the body attenuation becomes small so the contrast decreases. The dose
increases because the energy per photon increases. The contrast per unit dose, there-
fore, decreases at higher energies. Practical limitations such as obtaining sufficiently high
intensity sources and efficient detectors also limit the highest useable energy.

2.3. Definition of Cross Section and Linear Attenuation
Coefficient

In the diagnostic energy region, the interactions of radiation with matter take the form of
single processes with individual atoms. They can thus be described by cross sections
which give the probability interaction of the photons with an atom. These are measured
experimentally as shown in Fig. 2.3. Suppose n0 photons of energy E are incident on a

14



2. Information From X-ray Measurements

Figure 2.3.: Quantities in the Definition of Cross Section

thin absorber of thickness x. The absorber is assumed to consist of a single element with
N atoms per unit volume. If on the average n0 + δn photons pass through the absorber
without interacting, then the cross section σ(E) is defined by

− δn

n0
= σ(E)Nδx (2.3.1)

Note that the cross section has the units of area.
The number of photons transmitted by a thick absorber may be calculated by integrating

equation (2.3.1). The number that have not interacted after a thickness x will be

n(x) = n0e
−σ(E)Nx (2.3.2)

The linear attenuation coefficient is defined to be

µ(E) = σ(E)N (2.3.3)

Note that this quantity has the units (length)−1. If the material composition varies so
µ = µ(x, y, z;E), integrating equation (2.3.1) yields

n = n0e
−

∫
µ(x,y,z;E)ds (2.3.4)

where the line integral is over the path of the x-ray beam.

2.4. Kinds of Interactions in the Diagnostic Energy Region

The processes by which x-rays interact with matter may be classified according to the
object with which the photon interacts and the effect of the interaction on the photon.
These are summarized in Table 2.1 [Fano 1953].
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2. Information From X-ray Measurements

Table 2.1.: Interactions of X-Rays and Matter
Kinds or Interaction Effects of interaction
1. Interaction with atomic electrons a. Complete absorption
2. Interaction with nuclear b. Elastic scattering
3. Interaction with electric c. Inelastic scattering
4. Interaction with meson field surrounding nuclear particles

Figure 2.4.: Photoelectric Interaction of an X-Ray Photon with an Atom

There are twelve possible types of interaction processes. Not all of them have been
observed and the probabilities of most of them are very small. Only three processes are
important in the diagnostic x-ray energy region: the photoelectric effect (la), Compton
scattering (Ic), and Rayleigh scattering (lb).

The photoelectric effect involves photon with a bound atomic electron (usually from the
inner shells of an atom). As shown in Fig. 2.4, the photon disappears, an electron leaves
atom, and the atom as a whole recoils to conserve momentum.

The photoelectric interaction cannot occur unless the photon energy exceeds the bind-
ing energy of the electron. As the photon energy increases there are sharp jumps in the
cross section at the binding energy of the various shells of the atoms. At these energies
more electrons become available to interact. Beyond the binding energy of the innermost
shell, the cross section decreases rapidly with energy. Figure 2.5 is a plot of the photo-
electric cross section as a function of energy for various elements. Note that, at a given
energy, the cross section depends strongly on the atomic number.

Compton scattering is the dominant interaction in the diagnostic range when the photon
energy is much greater than the binding energy of the electron. As shown in Fig. 2.6, a
scattered photon appears at some angle e with the original photon direction. In this inter-
action the electron acts as a free particle and recoils to conserve momentum. Because
of the energy imparted to the electron, the scattered photon has less energy than the
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Figure 2.5.: Photoelectric Cross Section as a Function of Photon Energy for several ele-
ments. Also plotted is the function 1/E3

incident photon. If E is the original and E′ is the scattered photon energy, then (m is the
elctron rest mass and c is the speed of light)

1

E′ −
1

E
=

1

mc2
(1− cos θ) (2.4.1)

The relative probability for Compton scattering is a function of the scattering angle.
The distribution becomes peaked in the forward direction as energy is increased. Thus,
for given collimator acceptance angle , more scattered photons are detected the energy
increases. This is undesirable and is another reason for limiting the upper energy of the
diagnostic energy region The contribution of Compton scattering to the linear attenuation
coefficient depends on electron density. The total cross section for scattering into any
angle as a function of energy is given by the Klein-Nishina formula [Klein and Nishina
1929]

σC = 2πr20

{
1 + α

α2

[
2(1 + α)

1 + 2α
− 1

α
ln(1 + 2α)

]
+

1

2α
ln(1 + 2α)− 1 + 3α

(1 + 2α)2

}
(2.4.2)

where r0 = µ0e2

4πm and α = hν
mc2

. Although this formula appears complicated, it actually
defines a smooth, well-behaved function of energy. This function is plotted in Fig. 2.7

Rayleigh scattering is a cooperative effect of all the electrons in an atom The incident
electromagnetic field forces all the electrons to vibrate at its frequency. The vibrating
electrons in turn radiate electromagnetic energy whose intensity is the square of the sum
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Figure 2.6.: Compton Scattering of a Photon
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Figure 2.7.: Klein-Nishina Function of Energy
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2. Information From X-ray Measurements

of the amplitudes of the radiation from each electron. The frequency of the scattered and
incident radiation is the same. The cross section for this interaction is

σR(E) =
3

8
πr20f(θ) (2.4.3)

where r0 is as defined previously, and f(θ) is an atomic scattering factor which depends
strongly on atomic number, energy, and angle. In the forward direction all the amplitudes
are in phase and add to give a high intensity. At other angles, the amplitudes are out
of phase and give a smaller intensity. The cross section for Rayleigh scattering is thus
peaked in the forward direction. It varies with energy as E−n where n is between two and
three [Dyson 1973].

The interaction processes act independently and are mutually exclusive [Evans 1955).
Thus, the probability of a photon traversing an without any interactions is the product of
the probabilities of undergoing any of the individual interactions. This is

Probability = e−(µP+µC+µR)x (2.4.4)

where x is the object thickness and µP , µC , µR are the linear attenuation coefficients due
to photoelectric, Compton, and Rayleigh scattering interactions. The total attenuation
coefficient is simply the sum of the attenuation coefficients for the individual processes

µ = µP + µC + µR (2.4.5)

2.5. Interactions of Mixtures

Since, in the diagnostic energy region, the x-ray photon energies are much higher than
chemical binding energies, the total cross section of a material containing more than one
element is simply the sum of the contributions from each element.

σ =

N∑
i=1

σi (2.5.1)

If the material contains Niatoms per unit volume of element number i, the linear attenua-
tion coefficient will be

µ =
N∑
i=1

Niσi (2.5.2)

This rule is highly accurate except at energies within one or two Key of an absorption edge
[Deslattes 1969]. Since common body materials have absorption edges below the diag-
nostic energy region, the rule applies accurately in almost all cases of medical interest.
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2. Information From X-ray Measurements

2.6. Extraction of Energy Dependent Information from
Attenuation Measurements

Radiography systems, including computerized tomography systems, attempt to exclude
scattered radiation and base their measurements on the photons that have not interacted
with the body. In these systems, if the linear attenuation coefficient function µ(x, y, z;E) is
known at all points and all energies, then equation 2.3.4 can be used to calculate the av-
erage number of photons that have not interacted with the body. Since this is the quantity
measured, the linear attenuation coefficient function summarizes the information that can
be extracted by an x-ray attenuation measurement.

If a high energy resolution detector was used, then one could conceiveably use this
detector in a computerized tomography system to reconstruct the function µ(x, y, z;E) at
all points and energies of interest within the body. This would be exceedingly slow and
involve complex apparatus. Furthermore, all the information would be of little use because
it could not be displayed or utilized by the radiologist.

An alternate approach is to use vector space techniques. This technique involves find-
ing a set of basis functions {fi(E)} such that, to an accuracy limited by the experimental
errors in the measurements,

µ(E) = a1f1(E) + a2f2(E) + . . . (2.6.1)

Instead of estimating µ at every energy, the problem is one of estimating the coefficients
{ai}. If this procedure is to result in more simplicity, the set of functions {fi(E)} must be
small.

The mixture rule described in section 2.5 has an important effect on the problem of
finding a suitable set of basis functions. In general the set {fi(E)} would have an infinite
number of functions. The mixture rule, however, states that µ(E) is the sum of the atten-
uation coefficient functions of the elements present in significant amounts in the body. If
there are N of these elements

µ =

N∑
i=1

aiµi (2.6.2)

Thus µ(E) is contained in a space with dimension less than or to N. Except for iodine in
the thyroid and various trace elements, materials of the body have atomic number less
than 20 [Cho, 1975].

The dimension of the space containing µ(E) can be reduced further if the attenuation
coefficient of any element present in the body can be expressed as the linear combina-
tion of a small set of functions. The choice of these basis functions can be guided by the
physics of the interactions. As discussed in section 2.4, there are three significant interac-
tions: the photoelectric effect, Compton scattering, and Rayleigh scattering. Furthermore,
as shown in Eq. 2.4.5, the contributions of these interactions to the linear attenuation
coefficient add. If energy functions could be found to describe these interactions, would
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10
1

10
2

10
−3

10
−2

10
−1

10
0

Rayleigh

Compton Scattering

Photoelectric

X−ray energy (keV)

W
at

er
 C

ro
ss

−
S

ec
tio

ns
 c

m
2 /g

m

Figure 2.8.: Cross-sections as a function of energy for water

be good candidates for a basis set. The cross section per electron for Compton scattering
as a function of energy is given by the Klein-Nishina formula, Eq. 2.4.2. Experimental
tests of this formula in the diagnostic energy region have excellent agreement with theory
[Bernstein and Mann 1956].

No good theoretical formulas exist to describe the energy dependence of the photo-
electric effect. Figure 2.4 shows calculations the photoelectric cross section for various
elements as a function of energy. For the atomic number and energy region of interest,
a/E3seems to provide a good fit.

Figure 2.8 shows the relative contributions of the three interactions to the attenuation
coefficient of water. The photoelectric effect and Compton scattering clearly predominate
Rayleigh scattering. The dominance is even greater for higher average atomic number
materials such as bone. The accuracy of computerized tomography is of the order of 0.1%.
Thus it might be possible to distinguish Rayleigh scattering at some energies. However,
as described in Section 2.4, its dependence on energy is very close to the form of the
photoelectric effect.

The ultimate choice of a basis set is empirical. A set of functions must be found which,
for the atomic number and energy region of interest, fit experimental data to an accuracy
comparable to the measurement accuracy. The basis set will change as the accuracy of
the measurement system increases.

Highly accurate measurements on body tissues have recently become available [Phelps,
Hoffman, Ter-Pogossian 1975]. The measurement of the attenuation coefficient of a body
material is a difficult task. First, because of the accuracy required, the measurement would
be difficult for any material. Biological materials present a serious problem. They must be
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2. Information From X-ray Measurements

removed from the donor and inevitably change in this process. In the measurements of
Phelps, Hoffman, and Ter-Pogossian steps were taken to minimize these changes. Never-
theless, the relationship between the in-vivo and in-vitro values is still somewhat in doubt.
For the purpose of testing the basis set, the measurements are entirely adequate. They
represent highly accurate measurements of the attenuation coefficient of a material. If a
good fit is found for these materials, the fit will also be good for the in-vivo values. The re-
lationship between the values of the in-vivo and in-vitro measurements is the only matter
of doubt.

The measurements were used to test a proposed representation

µ(E) = a1f1(E) + a2fKN (E) (2.6.3)

where f1(E) = 1/E3and fKN (E) is the Klein-Nishina function. The results are shown in
Tables 2.2 and 2.3. The least squares curve fitting routine described in Appendix B was
used. The accuracy is of the order of 0.1% for energies greater than 30 Kev. This is the
order of magnitude of the measurement accuracy and also the accuracy of a computerized
tomography system. The theoretical curves and the experimental points are shown in Fig.
2.9. The success of the fit with two functions indicates that the contribution of Rayleigh
scattering cannot be distinguished. Or else, the value of a1 contains the contribution of
the photoelectric effect plus some contribution from Rayleigh scattering.

2.7. Physical Interpretation of Coefficients

The coefficients a1 and a2 can be related to the physical properties of the material. The
value of a1is determined mainly by the photoelectric interaction. This term is strongly
dependent on the atomic number of the material. The value of a1 is

a1 ≈ K1
ρ

A
Zn (2.7.1)

where K1 is a constant, ρ is the mass density, A is the atomic weight, and Z is the atomic
number. This expression is not exact, but it gives the approximate dependence on the
physical parameters [Evans 1955].

The coefficient a2 gives the contribution of Compton scattering. This coefficient is pro-
portional to the electron density and thus

a2 ≈ K2
ρ

A
Z (2.7.2)

The quantity Z/A is nearly constant for most elements except hydrogen so a2 is roughly
proportional to the mass density.

The measurements of Phelps, Hoffman, and Ter-Pogossian can be used to calculate
values of a1 anda2for the tissues they measured. These give some indication of the range
of values of these coefficients. There are two coefficients for every tissue. These are
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2. Information From X-ray Measurements

Table 2.2.: RESULTS FOR FIT OF THEORETICAL FUNCTIONS TO EXPERIMENTAL
DATA (SOFT TISSUE)

En-
ergy
(keV)

Fat (meas.) Fat (Calc) Brain (Meas.) Brain (Calc.) Pancreas(meas) Pancreas (calc)

17.7 .6647 .6585 1.092 1.076 1.175 1.163
21.1 .4615 .4676 .7106 .7191 .7725 .7737
26.4 .3273 .3311 .4593 .4657 .4927 .4969
27.4 .3169 .3159 .4340 .4375 .4600 .4661
31.1 .2760 .2743 .3517 .3614 .3772 .3831
35.5 .2451 .2439 .3062 .3064 .3219 .3231
41.4 .2189 .2194 .2631 .2632 .2771 .2761
47.2 .2041 .2045 .2387 .2378 .2500 .2485
52.0 .1950 .1958 .2251 .2236 .2332 .2332
59.5 .1843 .1860 .2080 .2032 .2167 .2166
59.6 .1850 .1860 .2079 .2080 .2157 .2164
84.3 .1660 .1671 .1821 .1817 .1899 .1883
97.4 .1608 .1605 .1741 .1735 .1818 .1796
103.2 .1618 .1580 .1711 .1704 .1780 .1764
121.9 .1517 .1507 .1630 .1620 .1679 .1676
136.3 .1465 .1460 .1586 .1566 .1621 .1620

Table 2.3.: RESULTS FOR FIT OF THEORETICAL FUNCTIONS TO EXPERIMENTAL
DATA (BONE)

Energy (keV) Meas. Calc.
10 20.0 20.2
15 6.28 6.14
20 2.78 2.11
30 .958 .940
40 .510 .505
50 .347 .347
60 .272 .274
80 .208 .212
100 .180 .184
150 .14 .154
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2. Information From X-ray Measurements

Figure 2.9.: Theoretical curves and experimental values for attenuation coefficients. The
crosses are experimental values.
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2. Information From X-ray Measurements

plotted on a two dimensional presentation in Fig. 2.10. A conventional system will give
the value of the linear attenuation coefficient at a single energy E0

µ(E0) = a1f1(E0) + a2fKN (E0) (2.7.3)

This represents the projection of the data in Fig. 2.10 onto a line passing through the
origin with slope f1(E0)

f2(E0)
. There is obviously more information in the two dimensional data

than in the one dimensional projection.

2.8. Implications of a Two Function Basis Set

The fact that there are only two functions in the basis set has several important implica-
tions. First, any basis set is not unique. Mathematically, a set of linear combinations of
the functions may also be an adequate basis set. The physical implication of this fact is
that the attenuation coefficients of any two distinct materials are also a good basis set. In
Chapter 4 this will be shown to have a strong effect on the interpretation and limitations of
selective material imaging in a conventional single projection x-ray system.

The two function basis set also has many practical implications. It implies that complete
energy dependent information can be extracted from relatively simple measurements.
This will be discussed in the next chapter.
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2. Information From X-ray Measurements

1. Clotted blood 6. Meningioma
2. Clotted blood 7. Meningioma
3. Subdural hematoma 8. Medullablastoma
4. Water 9. Astrocytoma
5. Neuroma 10. Human grey matter
11. Human white matter

Figure 2.10.: Two-dimensional plot of the information available from energy spectral anal-
ysis. The values of the coefficients a1 and a2 are calculated from measure-
ments of the attenuation coefficients of body materials at 16 energies in the
diagnostic region. Each point represents the (a1, a2) values for a given body
material. 26



3. Extraction of Energy Dependent
Information with Broad Spectrum
Measurements

3.1. Introduction

As discussed in Chapter 2, the complete energy dependent information in an x-ray trans-
mission measurement is summarized by two constants which are independent of energy.
It should be possible to calculate these constants from measurements having low energy
resolution. The detectors that are now commonly used in radiography, such as film screen
cassettes or sodium iodide scintillation detectors, integrate over energy and have essen-
tially no energy resolution. These detectors have been perfected over a long period of
time and it would be advantageous to design a system configuration that would utilize
them.

It might be possible to use integrating detectors to measure energy dependent infor-
mation because of the analogy of the x-ray system to a color television camera. Both
systems attempt to measure information that depends on the energy of electromagnetic
radiation. In both cases the information is summarized by a small number of constants.
The color television attempts to measure the amounts of three primary colors at any point
in the scene. This is sufficient because the receptors in the human eye, apparently, can
only distinguish between these three colors and their combinations (Rushton 1969). The
color television camera extracts the color information by placing color filters between con-
ventional integrating “black and white” cameras and the scene. The analogy in the x-ray
system is to extract energy dependent information by making integrating measurements
with different x-ray spectra incident on the patient.

In this chapter we will discuss the use of this type of measurement, as well as other low
resolution measurements, to extract complete energy dependent information. First, we
will introduce and define the concepts necessary to describe x-ray energy spectra. Next,
we will discuss the deterministic considerations for calculating the information from broad
spectrum measurements. The, accuracy of these measurements is fundamentally limited
by the random nature of measurements on x-rays. In the last part of this chapter, we de-
velop a stochastic model for the measurements and use it to derive an optimum procedure
for estimating the energy dependent information. The errors in the estimates are depen-
dent on the number of x-ray photons, and hence the dose, involved in the measurement
and expressions relating these quantities are derived.
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3. Broad Spectrum Measurements

Figure 3.1.: System for measuring an x-ray energy spectrum

3.2. X-ray Spectra and Their Measurement

An x-ray spectrum may be measured using an energy resolving detector and a multichan-
nel analyzer. The measurement system is shown schematically in Fig. 3.1. The system
operates as follows:

For every incident photon, the detector produces a pulse whose size is propor-
tional to the energy of the photon. The A/D converter senses the pulse size
and classifies it into one of n energy regions, or channels. The multichannel
analyzer contains a memory with a location for each channel and circuitry to
add one to the count of the appropriate channel for each measurement from
the A/D converter. The system counts for a fixed time and then stops. At
this point, the number of counts per channel will be proportional to the x-ray
spectrum except for the random nature of the measurement.

A typical x-ray tube spectrum is shown in Fig. 3.2. The x-ray photons are produced by
accelerating electrons across a high voltage in a vacuum tube and having them impinge
on an anode. Two processes are responsible for the production of x-rays. The most
important is bremsstrahlung radiation. This is caused by the deceleration of the electrons
as they strike the anode and produces the broad continuous part of the spectrum. It is
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3. Broad Spectrum Measurements

Figure 3.2.: Typical x-ray tube spectrum (from Epp and Weiss 1966)

impossible to produce photons with an energy greater than the electron kinetic energy so
the bremsstrahlung spectrum has an upper cutoff energy. The second process produces
the sharp spikes in the spectrum from 60 to 70 keV. In decelerating, the high energy
electrons knock out inner shell electrons of the anode material. When these vacancies
are filled, fluorescent radiation is emitted. The energy of this radiation is sharply defined
and characteristic of the anode material (tungsten in the case of Fig. 3.2).

There are many practical difficulties in the measurement of an x-ray tube spectrum.
First, no detector system has perfect energy resolution. The measurement is always the
convolution of the detector energy impulse response with the desired quantity. Semicon-
ductor detectors have resolution of about 1 keV. Also, high resolution pulse height analysis
cannot analyze a large number of photons per second. X-ray tubes produce photons in
copious amounts and provisions must be made to reduce the count rate. This is usually
done by separating the detector and tube. Finally, the anode voltage of the x-ray tube
is usually poorly filtered. The tube spectrum is not constant but varies with time. The
spectrum that will be measured is an average over tine.
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3. Broad Spectrum Measurements

A precise terminology has been adopted (ICRU 1971) to describe x-ray spectra and
related quantities. The terminology distinguishes between an experimental measurement
which is a random quantity and non-stochastic quantities which can be estimated as an
average of a series of experiments. The quantities that will be defined here are non-
stochastic quantities. The definitions also distinguish between number measurements
and energy measurements. Instead of recording the number of photons per channel, the
measurement system could record the total energy per channel. This will yield another
kind of spectrum.

The fluence, φ, of particles at a point is defined to be the quotient of the average number
of particles dN which enter a sphere of area da centered at the point.

φ =
dN

da
(3.2.1)

The fluence rate, ψ, is the quotient of dφ by dt, where dφ is the increment of fluence in the
time interval dt.

ψ =
dφ

dt
(3.2.2)

The definitions for energy fluence and energy fluence rate are exactly analogous.
A spectrum is the distribution of a quantity with respect to another quantity. The sum

distribution φ(E)is that part of the fluence rate due to particles with energies between 0
and E. The differential distribution of φ(E)with respect to the particle energy will be called
the spectrum S(E).

S(E) =
dφ(E)

dE
(3.2.3)

In words, it is the average number of photons per unit area, per unit time, and per energy
interval.

3.3. Extraction of Energy Dependent Information from
Integrating Measurements–Deterministic Considerations

By analogy with a color television system, we would hope to be able to calculate the en-
ergy dependent information from measurements with detectors that integrate over energy.
This leads to a set of integral equations that relate the measurements to the constants
that summarize this information. In this section we derive these integral equations and
conditions for the existence of a unique solution.

At any energy, the fraction of the photons that are transmitted through an object with
linear attenuation coefficient µ(x, y, z;E)is

fraction = e−
∫
µ(x,y,z;E)ds (3.3.1)
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3. Broad Spectrum Measurements

If an x-ray beam with spectrum S(E)is incident on the object, the average number of
photons that pass through the object is

N = AT

∫
S(E)e−

∫
µ(x,y,z;E)dsdE (3.3.2)

where A is the detector area and T is the measurement time. This will be the number of
photons counted by a detector system if its quantum efficiency G(E) is one at all energies
in the diagnostic region. Otherwise G(E) must be included in the integral. The efficiency
of detectors used in medical systems is close to one.

If two measurements with spectra S1(E) and S2(E) are made, the data are

Ni = AT

∫
Si(E)e−

∫
µ(x,y,z;E)dsdE, i = 1, 2 (3.3.3)

Introducing the basis set f1(E) and fKN (E)

µ(x, y, z;E) = a1(x, y, z)f1(E) + a2(x, y, z)fKN (E) (3.3.4)

so that ∫
µ(x, y, z;E) = A1f1(E) +A2fKN (E) (3.3.5)

where
Ai =

∫
ai(x, y, z)ds, i = 1, 2. (3.3.6)

The Ai are not to be confused with the detector area A. Substituting in equation 3.3.3, the
integral equations that must be solved are

N1 = AT

∫
S1(E)e−A1f1(E)−A2f2(E)dE (3.3.7)

N2 = AT

∫
S2(E)e−A1f1(E)−A2f2(E)dE (3.3.8)

As discussed in Chapter 1, if only a single projection is used, there will be spatial averag-
ing and only the line integrals of a1and a2 can be calculated. In Chapter 5, we will discuss
the techniques for calculating a1and a2 from the measurement of many projections.

The spectra, S1(E) and S2(E), in equations 3.3.7 and 3.3.8 can be formed in many
ways. For example, if an x-ray tube with spectrum S(E) is used, they may be formed by
filtering the x-rays from the tube through materials with transmissions g1(E) and g2(E)
so S1(E) = S(E)g1(E) and S2(E) = S(E)g2(E)). Alternately, the tube voltage can be
changed to produce the two spectra. The same model can be used for a detector with
simple energy resolution. If single level pulse height analysis is used so S1(E) is all the
counts from 0 to some threshold energy ET and S2(E) is all the counts with energy above
ET then the model with g1(E) and g2(E) appropriate rectangle functions may be used.
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3. Broad Spectrum Measurements

The model can also be generalized to the more realistic case where the threshold energy
is not sharply defined.

For any given spectra, the equations 3.3.7 and 3.3.8 must be solved. This is not possi-
ble in all cases. A sufficient condition for the solution of these equations may be derived
by considering them to define a transformation between (N1, N2) and (A1, A2). The trans-
formation will be invertible, and thus the equations can be solved if the Jacobian of the
transformation is nonzero (Kaplan 1973)

J = det

(
∂N1
∂A1

∂N1
∂A2

∂N2
∂A1

∂N2
∂A2

)
6= 0 (3.3.9)

If the Jacobian is nonzero but has a small absolute value, it will be shown that there will
be relatively large errors in the calculated values of (A1, A2).

The deterministic considerations for detectors that measure energy instead of the num-
ber of photons are essentially the same. The energy spectrum I(E) must be used instead
of the photon number spectrum S(E). These are related by

I(E) = ES(E). (3.3.10)

3.4. Stochastic Models for Measurements With Broad
Spectrum Sources

Stochastic considerations are of fundamental importance in x-ray measurements for sev-
eral reasons. In common with any other experimental procedure, x-ray measurements
are random variables because of the influence of small factors that cannot be controlled
in the experiment. Measurements on x-rays are random quantities for more fundamental
reasons. The x-rays are produced by processes that take place on the atomic or nuclear
scale. These processes are described by quantum mechanics and are inherently ran-
dom. Since x-rays have sufficient energy so a single photon has a measurable effect,
measurements on x-rays show the random nature of the processes that produce them.

The Poisson process is generally used to model the arrival times of x-ray photons at
a detector. If a random process satisfies the following axioms, it can be shown to be a
Poisson process (Parzen 1962). Suppose N(t) is the number of photons that have arrived
by time t. The axioms are:

1. Axiom 0: We begin counting at time 0 so N(O) = 0.

2. Axiom 1: The number of counts over disjoint time intervals are independent.

3. Axiom 3: It is not possible for photons to arrive simultaneously.

4. Axiom 4: For any two times t > s ≥ 0 and any h > 0, the random variables N(t) −
N(s)and N(t+ h)−N(s+ h) are identically distributed.
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3. Broad Spectrum Measurements

These axioms seem to be a reasonable idealization of the random arrival of x-ray photons.
By using these axioms the properties of a Poisson random process can be derived. The
number of photons arriving at a detector have been experimentally shown to have the
properties of a Poisson process.

Suppose a source, such as an x-ray tube, is used which produces photons with many
different energies. The arrival times of these photons may still be described as a Poisson
process. The energy may be included by using a marked Poisson process (Snyder 1975)
. This is a conventional Poisson process plus a random variable. With the occurrence
of each photon, the random variable describes its energy. The probability distribution
function of the random variable is related to the spectrum by

f(E) =
S(E)∫∞

0 S(E)dE
(3.4.1)

There are two basic types of x-ray detectors. One kind, such as a Nal scintillation
detector used in counting mode, counts the number of photons incident on the detector
regardless of their energy. The other kind, such as a Nal detector in current integrating
mode or a film screen cassette, measures the total energy of the photons incident during
the measurement period. Models for the measurements from both types of detectors will
be developed.

Models for measurements with counting detectors are discussed in Parzen, 1962. In
general, the counting process of the registered counts will be different from the counting
process of the arriving photons because of the nonzero resolving time of the counter
system. If two or more photons arrive during this resolving time, not all of them will be
counted. The simplest case will be discussed here. In this case, the resolving time is
much less than the mean time between the arrival of photons. The registered counts will
then also be a Poisson process. If the detector counts for fixed time T, the number of
counts will be a Poisson random variable with parameter

β = AT

∫ ∞

0
G(E)S(E)dE (3.4.2)

In this equation G(E) is the probability of the detector counting a photon of energy E, S(E)
is the spectrum incident on the detector and T is the counting time, and A is the area of
the detector. For simplicity G(E) will be assumed equal to one.

Two or more measurements with different source spectra are needed to extract energy
dependent information. From the axioms of a Poisson process, the measurements will be
independent if they are taken at different times or with different detectors. If a detector
with energy resolution is used, the measurements may be taken at the same tine. The
relationship between measurements of different energy regions is described by the follow-
ing theorem (Snyder 1975). Partition the energy region into a set of disjoint regions (Bk)
and let (Nk) be the set of counting processes associated with the photons with energies in
these regions. If the underlying process is Poisson and if the random variables associated
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with the occurrence of each photon are independent and identically distributed, then the
counting processes (Nk) are mutually independent Poisson counting processes. The kth

process will have an average number of photons per unit time

λk = λ

∫
Bk

f(E)dE (3.4.3)

where f(E) is the probability distribution function of the photon energy and

λ = A

∫ ∞

0
S(E)dE (3.4.4)

is the average number of photons of any energy per unit time. Measurements from a
detector which measures total energy follow a slightly different law. The energy of the
photons that are incident on a detector during a time T is

Q =

N(T )∑
n=1

En (3.4.5)

In this equation N(T) is the Poisson random variable describing the number of photons
arriving at the detector during the time T and the En are independent identically distributed
random variables describing the energy of each photon. This is a compound Poisson
process. If the average number of counts in the interval T is large and if E3/E2 is finite, Q
will be approximately distributed as a normal random variable with mean m and variance
σ2

m = λTE (3.4.6)

σ2 = λTE2 (3.4.7)

In these expressions an overbar denotes an expected value over the probability distri-
bution function of the photon energy f(E). This result is intuitively reasonable from the
central limit theorem. Energy measurements share many properties with measurements
of the number of photons. They will be independent if they correspond to different detec-
tors, different time intervals, or nonoverlapping photon energy regions.

3.5. Estimation of A1 and A2 from Measurements with
Counting Detectors

Since measurements with x-rays are random quantities, statistical techniques must be
used to calculate the line integrals A1 and A2 from these measurements. In this section
an optimum procedure, known as maximum likelihood estimation, for carrying out these
calculations will be derived. Maximum likelihood estimation is based on choosing the val-
ues of A1 and A2 that maximize the probability of occurrence of the measured quantities.
These estimators have many desirable features for large number of counts.
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Suppose photons with a spectrum S(E) are incident on an object. If the detector counts
only photons that have not interacted with the object, the probability of a photon being
counted is

P = e−
∫
µ(x,y,z:E)ds (3.5.1)

The transmitted spectrum will be

St(E) = S(E)e−
∫
µ(x,y,z:E)ds (3.5.2)

Since a Poisson process is preserved under random selection (Parzen 1962), the trans-
mitted process will have the same stochastic properties as the incident spectrum.

The number of counts from measurements with different source spectra, N1 and N2,
will be independent Poisson random variables with parameters

β1 = C

∫
S1(E)e−A1f1(E)−A2fKN (E)dE (3.5.3)

β2 = C

∫
S2(E)e−A1f1(E)−A2fKN (E)dE (3.5.4)

where the constant, C, is proportional to the detector area and the counting time. The
probability of measuring N1 and N2 given that A1 and A2 take on some value is

P (N1, N2 | A1, A2) =
βN1
1 e−β1

N1!

βN2
2 e−β2

N2!
(3.5.5)

This function, called the likelihood function, must be maximized to give the maximum
likelihood estimate. Since the logarithm is a monotonically increasing function it is equiv-
alent, and easier, to maximize the logarithm of the likelihood function L,

L = N1 lnβ1 − β1 +N2 lnβ2 − β2 − ln(N1! N2!) (3.5.6)

This function will be maximum when

∂L

∂A1
= 0 =

∂β1
∂A1

(
N1

β1
− 1

)
+
∂β2
∂A1

(
N2

β2
− 1

)
(3.5.7)

∂L

∂A2
= 0 =

∂β1
∂A2

(
N1

β1
− 1

)
+
∂β2
∂A2

(
N2

β2
− 1

)
(3.5.8)

Equations (3.5.7) and (3.5.8) are a set of homogeneous linear equations in the quanti-
ties

(
N1
β1

− 1
)

and
(
N2
β2

− 1
)

. The only unique solution is(
N1

β1
− 1

)
= 0 (3.5.9)

(
N2

β2
− 1

)
= 0 (3.5.10)
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which occurs when the determinant of the coefficient matrix is nonzero.

det

(
∂β1

∂A1

∂β1

∂A2
∂β2

∂A1

∂β2

∂A2

)
6= 0 (3.5.11)

This is equivalent to requiring the Jacobian of the transformation from (β1, β2) to (A1, A2)to
be nonzero.

The estimator equations (3.5.9) and (3.5.10) are equivalent to

N1 = β1 = C

∫
S1(E)e−A1f1(E)−A2fKN (E)dE (3.5.12)

N2 = β2 = C

∫
S2(E)e−A1f1(E)−A2fKN (E)dE (3.5.13)

Maximum likelihood estimation thus involves solving the deterministic equations with the
measured data.

Maximum likelihood estimators have many desirable asymptotic properties (Van Trees
1968). For a large number of independent trials, the average of the estimates converges to
the proper value and the variance approaches the Cramer-Rao bound. In our case, there
is only one trial with a large number of counts. An approach based on Taylor’s series may
be used to calculate the bias and the variance of the estimates (Papoulis 1965).

The integrals in equations (3.5.12) and (3.5.13) define two functions N1 = β1(A1, A2)
and N2 = β2(A1, A2). These functions may be inverted to give A1 = g1(N1, N2) and
A2 = g2(N1, N2). Since N1and N2 are Poisson random variables, their standard deviation
is the square root of the number of counts. As the number of counts increases, the relative
spread of the counts decreases. Thus a Taylor’s series with a small number of terms gives
an accurate approximation to the inverse functions. Consider the Taylor’s series about the
average values N̄1 andN̄2

A1 = g1(N1, N2)+
∂g1
∂N1

(N1−N1)+
∂g1
∂N2

(N2−N2)+
1

2

∂2g1
∂N2

1

(N1−N1)
2+

1

2

∂2g1
∂N2

2

(N2−N2)
2+. . .

(3.5.14)

A2 = g2(N1, N2)+
∂g2
∂N1

(N1−N1)+
∂g2
∂N2

(N2−N2)+
1

2

∂2g2
∂N2

1

(N1−N1)
2+

1

2

∂2g2
∂N2

2

(N2−N2)
2+. . .

(3.5.15)
The bias of the estimates may be evaluated by finding the expected value of A1 and

A2. These should be near g1(N1, N2) and g1(N1, N2) for a small bias. Taking the expected
value of both sides of equation (3.5.14)

A1 = g1(N1, N2) +
1

2

∂2g1
∂N2

1

N1 +
1

2

∂2g1
∂N2

2

N2 + . . . (3.5.16)

In deriving this expression, the fact that N1 and N2 are Poisson was used so Ex(Ni −
Ni)

2 = Ni. The bias of the estimate of A1is therefore:

bias = A1 − g1(N1, N2) =
1

2

∂2g1
∂N2

1

N1 +
1

2

∂2g1
∂N2

2

N2 + . . . (3.5.17)
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The expression for the bias of A2 is the same with g2 substituted for g1.
The variance of A1 is Ex(A1−A1)

2. Assuming A1 is approximately equal to g1(N1, N2),
equation (3.5.14) may be used to show

Ex(A1−A1)
2 = (

∂g1
∂N1

)2N1+(
∂g1
∂N2

)2N2+
1

2

∂g1
∂N1

∂2g1
∂N2

1

Ex(N1−N1)
3+

1

2

∂g1
∂N2

∂2g1
∂N2

2

Ex(N2−N2)
3+. . .

(3.5.18)
The first two terms are the Cramer-Rao bound. For a Poisson random variable Ex(N −
N)3 = N . The variance of A2 is the same with g2 substituted for g1.

The second derivative terms in these expressions are difficult to evaluate for the general
case. In order to estimate the relative magnitude of the various terms, a simple case will be
assumed. This is the case of measurements with two monoenergetic sources of energies
E1and E2. The number of counts measured will be

N1 = N10e
−A1f11−A2f12 (3.5.19)

N2 = N20e
−A1f21−A2f22 (3.5.20)

These expressions result from the integrals in equations (3.5.12) and (3.5.13) when the
spectrum S(E) is a delta function. The symbols in these equations are defined as follows:
N10 and N20 are the numbers of photons of energies and incident on the patient during
the measurement, f11 = f1(E1), f12 = fKN (E1), f21 = f1(E2), and f22 = fKN (E2). These
equations can be solved for A1 and A2. The results are

A1 =
f12 ln

N2
N20

− f22 ln
N1
N10

(f11f22 − f12f21)
(3.5.21)

A2 =
−f11 ln N2

N20
+ f21 ln

N1
N10

(f11f22 − f12f21)
(3.5.22)

Using these equations, the bias may be calculated from equation (3.5.17). The results
are:

bias(A1) =

f22
N1

− f12
N2

2(f11f22 − f12f21)
(3.5.23)

bias(A2) =
−f21

N1
+ f11

N2

2(f11f22 − f12f21)
(3.5.24)

The bias decreases inversely with the number of counts. Since in a medical system,
the number of counts is 106 or larger, the bias is quite small. Assuming energies of
E1 = 50 keV and E2 = 100 keV and N1 = N2 = 105, the bias terms will be

bias(A1) = −0.2(keV )3 (3.5.25)

bias(A2) = 10−5 (3.5.26)
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The variance can be calculated using the equations for A1 and A2 and the general
expression for the mean value of the Ai in (3.5.16). The results are:

E(A1 −A1)
2 =

f2
12

N2
+

f2
22

N1

(f11f22 − f12f21)2
−

f2
22

N1
2 +

f2
12

N2
2

2(f11f22 − f12f21)2
+ . . . (3.5.27)

E(A2 −A2)
2 =

f2
11

N2
+

f2
21

N1

(f11f22 − f12f21)2
−

f2
21

N1
2 +

f2
11

N2
2

2(f11f22 − f12f21)2
+ . . . (3.5.28)

Since N1 and N2 are large, the second and subsequent terms are negligible and the
variance equals the Cramer-Rao bound. Note that the variance and bias are described
by alternating series so the error in dropping terms is less than the absolute value of the
first term dropped. Assuming the same energies and numbers of photons as for the bias
calculations, the values of the standard deviations of A1 and A2are:

σA1 = 698.4(keV )3 (3.5.29)

σA2 = 3.76× 10−3 (3.5.30)

Comparing the values of the standard deviation and the bias, it is clear that the standard
deviation contributes a much larger error than the bias. Since the variance is very close to
the Cramer-Rao bound, a general expression in terms of β1 and β2 may be derived (Van
Trees 1968). The variance σ2A1

is

σ2Ai
=
cofactor(Jii)

det(J)
(3.5.31)

where J is the Fisher information matrix with elements

Jij = −Ex
[

∂2L

∂Ai∂Aj

]
i, j = 1, 2 (3.5.32)

Evaluating these expressions yields the following for the variances of A1 and A2:

σ2A1
= E(A1 −A1)

2 =

m2
12

N2
+

m2
22

N1

(m11m22 −m12m21)2
(3.5.33)

σ2A2
= E(A2 −A2)

2 =

m2
11

N2
+

m2
21

N1

(m11m22 −m12m21)2
(3.5.34)

where mij =
∂ ln βi

∂Aj
, i, j = 1, 2.

Summarizing, the maximum likelihood estimation procedure involves solving the deter-
ministic integral equations using the measured counts. If the number of counts is large,
the errors will be small. The main source of error is the variance of the results. This may
be estimated using equations (3.5.33) and (3.5.34).
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3.6. Estimation of A1 and A2 from Measurements with Energy
Detectors

As discussed in Section 3.4, measurements with detectors that measure total energy will
be independent normal random variables with variances σ2i = λTE2

i and means

mi = λTEi = AT

∫ ∞

0
ESi(E)e−A1f1(E)−A2fKN (E)dE (3.6.1)

where Si(E) are the photon number spectra incident on the patient. In this section, we
will derive a maximum likelihood estimator for A1 and A2 and evaluate its errors.
Since the measurements are independent normal random variables, the logarithm of the
likelihood function is

L = ln(Pr[Q1, Q2|A1, A2] = −(Q1 −m1)
2

2σ21
− (Q2 −m2)

2

2σ22
(3.6.2)

Now, L ≤ 0 and achieves its maximum value of zero if and only if Q1 = m1 and Q2 =
m2. Thus the maximum likelihood estimation procedure involves solving the deterministic
equations with the measured data.

The results for the errors with a detector that measures energy are quite similar to the
results for a counting detector. By using a Taylor’s series as in Section 3.5, the bias of the
estimates is

bias(Ai) =
1

2

∂2gi
∂Q2

1

σ21 +
1

2

∂2gi
∂Q2

2

σ22, i = 1, 2 (3.6.3)

The Cramer-Rao bound for the variance is

σ2A1
= E(A1 −A1)

2 =

µ2
12

Q2
+

µ2
22

Q1

(µ11µ22 − µ12µ21)2
(3.6.4)

σ2A2
= E(A2 −A2)

2 =

µ2
11

Q2
+

µ2
21

Q1

(µ11µ22 − µ12µ21)2
(3.6.5)

where µij = ∂mi
∂Aj

, i, j = 1, 2, A1 = g1(Q1, Q2), A2 = g2(Q1, Q2).

3.7. Solution of Estimator Equations

For either a counting or energy detector system, two simultaneous nonlinear integral equa-
tions must be solved to calculate A1 and A2. In general, integral equations are difficult to
solve analytically. Even if an analytical solution were possible, the equations would have
to be solved again for each spectrum used. In this section, a technique is developed for
solving the integral equations which does not require analytical solutions. The validity

39
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Figure 3.3.: Plot of Logarithm of Total Energy of Transmitted Photons as Function of Alu-
minum Absorber Thickness (from Thoraeus 1940)

of this technique is shown by computer simulation and by experiment. The technique is
based on having an approximation to the equations with undetermined constants. For any
particular set of spectra and detector system, the constants are determined by making
accurate measurements on an object with known values of A1and A2. Once the con-
stants are determined, the resulting equations can be used to solve for A1 and A2 from
measurements on an unknown object.

The search for an approximate general form of the integrals is aided by the fact that they
define well-behaved and smoothly varying functions. Figure 3.3 is a plot of the value of
the logarithm of the total energy of the transmitted photons as a function of the thickness
of an aluminumu absorber. An x-ray tube source was used. The shape of this curve can
be explained physically. The slope of this curve is related to the average linear attenuation
coefficient

µav = − d

dx
ln

(
I

I0

)
(3.7.1)

As described in Chapter 2, the linear attenuation coefficient beyond the K absorption
edge is a decreasing function of energy. As the absorber thickness increases, the relative
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absorption of low energy photons increases and the average energy increases. This is
known as “hardening.” Thus, the slope of the curve in Fig. 3.3 must decrease as the
absorber thickness increases. This slope asymptotically approaches µ(Em) where Em is
the maximum energy in the spectrum. Similar results are obtained if numbers of photons
are measured. Since the attenuation coefficients are smooth functions, the logarithm of
the integrals will also be smooth functions. They can therefore be approximated by power
series with a small number of terms

ln I1(A1, A2) = b0 + b1A1 + b2A2 + b3A
2
1 + b4A

2
2 + b5A1A2 + b6A

3
1 + . . . (3.7.2)

ln I2(A1, A2) = c0 + c1A1 + c2A2 + c3A
2
1 + c4A

2
2 + c5A1A2 + c6A

3
1 + . . . (3.7.3)

The symbol I denotes either a total number of photons or their total energy. The sets of co-
efficients {bi} and {ci} can be determined by curve fitting techniques from measurements
an objects with known values of A1 and A2. Once these are known, the two simultaneous
equations can be solved numerically.

A computer simulation was performed to show the validity of this approximation. The
transmission integrals

βi(A1, A2) =

∫
Si(E)e−A1f1(E)−A2f2(E)dE, i = 1, 2 (3.7.4)

were evaluated for various values of A1and A2. An experimentally measured spectrum
(Epp and Weiss 1966) was used with a single level pulse height analysis detector. Thus,
l represents the number of counts with energy below the threshold ET . The results were
approximated by power series as in equations (3.7.2) and (3.7.3). The coefficients {bi}
and {ci} were calculated using least squares techniques. Once the coefficients were
known, the two simultaneous cubic equations were solved numerically as described in
Appendix B. The results are shown in Table 3.1. The first two columns are the actual
values, and the last two columns are the calculated values. Note that the errors are less
than 0.1 per cent.

Table 3.1.: ACCURACY OF SOLUTION OF INTEGRAL EQUATIONS
A1 A2 Â1 Â2

75000 1.5 74963 1.5001
75000 2.7 75029 2.6999
155000 1.5 154959 1.5001
155000 2.7 155039 2.6999

The accuracy of equation (3.7.2) was also tested experimentally. The apparatus shown
in Fig. 3.4 was used. This is an EMI scanner. The experiment consisted of making
accurate measurements of the transmitted intensity through a step wedge consisting of
two materials with accurately known dimensions. The x-ray tube source operated at 100
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Figure 3.4.: Experimental apparatus for gathering data using a scanned x-ray tube and
detector.

Kvp and 40 mA. The tube output was collimated into a thin beam and the intensity of this
beam after transmission through the object was measured by a sodium iodide scintillation
detector that was operated in the current integrating mode. The detector thus measured
total energy. The detector output was measured by an A/D converter and stored in the
computer. The x-ray tube and detector were scanned in unison so the beam traversed
the object. The measurements of the transmission at 3 mm intervals were stored by the
computer and printed on a line printer at the end of a scan.

As noted in Chapter 2, the attenuation coefficients of any two materials may be used as
a basis set. In this case the thicknesses of the materials take the place of the line integrals
A1 and A2. The data were fit to the equation

ln I = a1xLu + a2xAl + a3x
2
Lu + a4x

2
Al + a5 (3.7.5)

The two materials used were aluminum and lucite. The accuracy of this equation is shown
in Table 3.2. Several measurements were made for each set of thicknesses. The standard
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deviation of these measurements is also shown in this table. The error in the fit of the
theoretical equation is about the same as the experimental error of each measurement.
There was apparently a drift in the apparatus because the coefficients in (3.7.5) were
different for different scans. The accuracy of the fit, for any given scan, was always good.

Table 3.2.: FIT OF EXPERIMENTAL DATA TO APPROXIMATE FORM
XAl (cm) XLu (cm) I0

I

(
I0
I

)
calc

Error
.635 6.35 1.394±007 1.394 0
.635 5.715 1.227±.006 1.228 .001
1.27 5.08 1. 519±.005 1.517 .002
1.27 4.445 1.338±.007 1.336 .002
1.905 3.81 1.643±.006 1.647 .004
1.905 3.175 1.449±.007 1.449 0
2.54 2.54 1.784±.007 1.782 .002
2.54 1.905 1.565±.009 1.566 .001

3.8. Optimum Filter Functions

The choice of optimum filter functions or optimum incident spectra is a difficult problem.
The integral equations involved are nonlinear. The cost function, which in this case is
dose, is difficult to calculate for a general object. In this section, optimum filter functions
are derived for the case of small changes in A1and A2. This is a reasonable approximation
if a constant path length water bath is used. If only small changes in the Ai are involved,
small signal linear analysis may be used. Suppose

Ai = Ai0 + δAi (3.8.1)

where
∣∣∣ δA1
A1

∣∣∣ � 1 and
∣∣∣ δA2
A2

∣∣∣ � 1. The estimator integral equations for either the photon
counting or energy measurement case are

Ii =

∫ ∞

0
gi(E)Si(E)e−A1f1(E)−A2fKN (E)dE, i = 1, 2 (3.8.2)

Using the bracket notation for the inner product,

〈w, h〉 =
∫ ∞

0
S(E)e−A1f1(E)−A2fKN (E)w(E)h(E)dE (3.8.3)

Equations (3.8.2) become (note that we are assuming small δAi)

Ii = 〈gi, 1〉 − δAi 〈gi, f1〉 − δAi 〈gi, f2〉 (3.8.4)
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Suppose we want to minimize σ21 + σ22. Assuming a counting detector is used, the sum
of variances will be

σ2A1
+ σ2A2

=

m2
22+m2

22
β1

+
m2

12+m2
11

β2

(m11m22 −m12m21)2
(3.8.5)

Since I1 ≈ 〈g1, 1〉, I2 ≈ 〈g2, 1〉,

mij ≈
〈gi, fj〉
〈gi, 1〉

, i, j = 1, 2 (3.8.6)

where f2(E) = fKN (E). Substituting the approximate values of the mij in equation (3.8.5)

σ2A1
+ σ2A2

=
〈g2, 1〉 [〈g1, f1〉2 + 〈g1, f2〉2] + 〈g1, 1〉 [〈g2, f1〉2 + 〈g2, f2〉2]

[〈g1, f1〉 〈g2, f2〉+ 〈g2, f1〉 〈g1, f2〉]2
(3.8.7)

As mentioned in Chapter 2, the set of basis functions is not unique. In this case, it is
desirable to choose an orthogonal basis set so 〈f1, f2〉 = 0. This may be done by using
the Gram-Schmidt procedure with the definition of inner product given in 3.8.3. Assuming
this has been done 〈gi, f1〉2 + 〈gi, f2〉2 = 〈gi, gi〉2for i = 1, 2and Eq. 3.8.3 becomes

σ2A1
+ σ2A2

=
〈g2, 1〉 〈g1, g1〉2 + 〈g1, 1〉 〈g2, g2〉2

[〈g1, f1〉 〈g2, f2〉+ 〈g2, f1〉 〈g1, f2〉]2
(3.8.8)

Note that the numerator is independent of f1 and f2.
Using a vector interpretation of the inner products, the various terms in the denominator

of Eq. 3.8.8 are shown in Fig. 3.5. From this figure one can see that by setting g1 =
k1f1 and g2 = k2f2 where k1 and k2 are constants, the second term in the denominator
is zero and the first is maximized. The optimum values of k1 and k2 depend on dose
considerations. Once k1 and k2 are chosen the denominator is maximized and the total
expression is minimized. Since f1 and f2 are orthogonal, this means that the optimum g1
and g2 are also orthogonal.

3.9. Optimum Threshold Energy for Single Level Pulse Height
Analysis

The expressions for the variance of the calculated values are useful not only for general
considerations but also to optimize specific situations. In this section, the optimum thresh-
old energy for single level pulse height analysis will be discussed.

In a counting detector system, it is possible to classify the pulses according to their size
and hence the energy of the photon. The simplest of such systems classifies the pulses
into two groups:those with energy less than some threshold Et and those with energy
greater than Et. As discussed in Section 3.3, the energy dependent information can be
calculated from these measurements. For any given Et we can calculate the resultant
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Figure 3.5.: Vector Interpretation of Terms in Denominator

errors in the estimates of the Ai. There should be an optimum value of Et because if it is
too low or too high one of the measurements will have few photons and errors will result.

A computer simulation was performed to calculate these errors. The errors depend on
the threshold energy, the incident spectrum, and the body transmission. An experimentally
measured 105 Kvp spectrum (Epp and Weiss 1966) was used. It was assumed that 5x107

photons were incident during the measurement. The average energy is 50 Kev so the
energy deposited in the patient will be 4 ergs per measurement. This will be shown to
produce doses approximately twice those of intensity only systems.

The variance of the estimates is given by Eqs 3.5.33 and 3.5.34. The terms in these
expressions can be calculated by using the approximating form of equation (3.7.4). The
undetermined coefficients were found by calculating the number of photons in each mea-
surement for several values of A1 and A2 and then using least squares curve fitting tech-
niques. The variances were calculated as a function of threshold energy for various body
thicknesses. The results are shown in Fig. 3.6. There are several features of interest.
First, the minimum as a function of Et is very broad and not strongly dependent on body
thickness. Thus, one can choose a single threshold energy suitable for most applications.
Another feature of interest is the relative size of the errors in the photoelectric and Comp-
ton line integrals. The photoelectric term corresponds to a function that decreases rapidly
with energy. Since low energy photons are more highly attenuated by the body, this term
should be expected to have higher errors.
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Figure 3.6.: Optimum Threshold for Single Level Pulse Height Analysis
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3.10. Other Considerations

There are many practical considerations that must be considered in the implementation
of a system to extract energy dependent information. Two important ones are scatter and
system stability.

The equations in this chapter assume that once a photon has interacted it is removed
from consideration and will not be counted. In fact, a photon can have several Compton
scattering interactions and still enter the detector. In general, scattering adds a low spatial
frequency noise component which is independent of the directly transmitted photons. In
a conventional single projection system with a film cassette detector, relatively large num-
bers of scattered photons can be tolerated because of their low spatial frequency content.
Scatter is more troublesome in a system which derives information from mathematical
operations on measurements.

The effects of scatter on a conventional computerized tomography system are dis-
cussed by Stonestrom and Macovski (1975). There are two principal effects. The scatter
increases counting noise. Also, these systems use nonlinear operations to calculate the
line integral from their measurements. The additive scattered component introduces ar-
tifacts into the reconstruction. The artifacts are a more serious limitation than the added
counting noise.

Energy dependent systems use mathematical operations on measurements and will be
affected by scatter in a similar manner. The scatter will produce increased counting noise.
Errors will be introduced because nonlinear equations must be solved to calculate the
energy dependent information.

Scatter does not seem to be a fundamental problem, however, The successful opera-
tion of computerized tomography systems indicates that by proper collimation and other
techniques scatter can be reduced to negligible levels.

Another limitation is system stability. The calculations in this chapter assume that the
spectra do not change with time. There will be some change and this will introduce errors.
Since we are extracting more information, we would expect the stability requirements to
be more stringent. The experiments described in subsequent chapters show that, with
some care, the stability requirements can be met.
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4. Extraction of Energy Dependent
Information in Single Projection
Radiography

4.1. Introduction

Single projection systems are the most widely used in medical radiography. Even with
the introduction of computerized tomography, we would expect these systems to remain
popular. Although they do not extract the available information completely, the images
of a single projection system are sufficient for many purposes in radiology. Compared to
tomographic systems, they offer the advantages of simplicity and the capability of stopping
motion by forming an image in a short time interval.

The addition of energy dependent measurements increases the information presented
by a single projection system and, therefore, the usefulness of the system to a radiologist.
This chapter has two main parts. First, we describe some systems to measure the data
necessary to calculate the energy dependent information. These systems are relatively
simple modifications of conventional single projection systems and thus keep the advan-
tages of simplicity and “snapshot” operation. Next, we discuss the additional information
in an energy dependent system. We present two possible applications of this information
and experiments showing the feasibility of these techniques.

4.2. Systems for Measurement of Energy Dependent
Information in a Single Projection System

The theory developed in Chapter 3 allows the use of conventional detectors to measure
the data necessary to calculate the line integrals of the coefficients a1 and a2. The basic
data needed at any point in the image are the transmitted intensities with two different in-
cident spectra. This information can be measured in many ways. Two possible techniques
will be discussed in this section. They are spatial frequency multiplexing and a double film
screen cassette.

Acquisition of energy dependent information by spatial frequency multiplexing was in-
troduced by Macovski (Macovski, Alvarez, Chan, 1974). The technique is illustrated in
Fig. 4.1. A grating composed of alternate stripes of materials with transmissions g1(E)
and g2(E) is placed between the x-ray tube and the patient. The filtered beams of x-rays
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Figure 4.1.: Acquisition of energy dependent information by spatial frequency multiplexing.

are then incident on the patient and the transmitted intensity is recorded on a conventional
film-screen cassette. The width of the stripes is assumed to be small enough so the body
composition and thickness do not change appreciably from one stripe to the next.

The image recorded by the detector will be as shown in Fig. 4.2. This shows the
film density on a typical line across the image. The sinusoidal variation is caused by the
grating. The peak values, as illustrated, correspond to the desired quantities. The film
density is a nonlinear function of the total energy incident during exposure. If this energy
is within the useful range of the film, measurements of the film density can be used to
calculate the total energy of the photons.

I1 = h(D1) = AT

∫
ES(E)g1(E) exp[−A1f1(E)−A2f2(E)]dE (4.2.1)

I2 = h(D2) = AT

∫
ES(E)g2(E) exp[−A1f1(E)−A2f2(E)]dE (4.2.2)

In these equations, h(D) is the function relating the film density D to the total energy, A is
the area of a resolution element of the system, and T is the exposure time.

Another possibility for the acquisition of energy dependent information is a double film
screen cassette. This is illustrated in Fig. 4.3. The light measured by the first photographic
film corresponds to the low energy photons. It is proportional to

I1 = AT

∫
ES(E)

[
1− e−µ1(E)d1

]
exp[−A1f1(E)−A2f2(E)]dE (4.2.3)

The light gathered by the second film is proportional to

I2 = AT

∫
ES(E)e−µ1(E)d1

[
1− e−µ2(E)d2

]
exp[−A1f1(E)−A2f2(E)]dE (4.2.4)

49



4. Energy Dependent Information in Projection Radiography

Figure 4.2.: Typical line on film.

The measured quantities are equivalent to filtering with

g1(E) = 1− e−µ1(E)d1 (4.2.5)

g2(E) =
[
1− e−µ2(E)d2

]
e−µ1(E)d1 (4.2.6)

Other possibilities for the measurement of the data are systems which use scanned de-
tectors or either linear or area arrays of detectors. An experiment with a scanned detector
will be described in Section 4.6.

4.3. Energy Dependent Information from a Single Projection
System

The information from any single projection system still contains spatial averaging. Thus
it consists basically of the line integrals of the linear attenuation coefficient of the object.
In an energy dependent system, it will consist of two pieces of information at every reso-
lution element in the image. These will be A1 and A2, the line integrals of a1(x, y, z) and
a2(x, y, z) along a line from a point in the image to the source.

From the values of A1 and A2 we can infer two types of information: an indication of the
average atomic number and the amount of material along the path. Suppose the object
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Figure 4.3.: Acquisition of energy dependent information using a double film screen
cassette.

consists of a single material with coefficients (a1, a2) and thickness d. The line integrals
will be

A1 =

∫
a1(x, y, z)ds = a1d (4.3.1)

A2 =

∫
a2(x, y, z)ds = a2d (4.3.2)

As described in Chapter 2, the coefficients a1 and a2 depend on the physical properties of
the material. The relationships are

a1 ≈ K1
ρ

W
Z4 (4.3.3)

a2 ≈ K2
ρ

W
Z (4.3.4)

where K1 and K2 are constants, ρ is the mass density, W is the atomic weight, and Z is
the atomic number.

After substituting in equations 4.3.1 and 4.3.2, expressions can be derived for quantities
that depend on physical properties.

The ratio A1/A2 depends on atomic number only

A1

A2
≈ K1

K2
Z3 (4.3.5)

Since Z/W is roughly constant for most elements, the line integral A2 is proportional to
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Figure 4.4.: Two-dimensional plot of the line integrals.

the amount of material present ρd.

A2 ≈ K2
Z

W
ρd ≈ (constant)ρd (4.3.6)

Note that ρd has the units of mass per unit area.
The quantities A1 and A2 may be plotted as shown in Fig. 4.4. On this plot A1/A2 is the

slope of the radius vector to the point (A1, A2). From equation 4.3.5 the greater this slope,
the greater the atomic number. Measurements on materials with the same composition
will have the same slope and thus lie along the same line. The distance from the origin
along this line

r =
√
A2

1 +A2
2 = ρd

√(
K1

Z4

W

)2

+

(
K2

Z

W

)2

(4.3.7)

will be proportional to ρd for a given material.
If several materials are present along the x-ray path, one cannot give a precise interpre-

tation to the values of A1 and A2. The best that can be done is to infer average properties
of the materials. Suppose there are m materials with coefficients (a11, a21), (a12, a22), . . . , (a1m, a2m)
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and thicknesses d1, d2, . . . , dm. The line integrals will be

A1 = a11d1 + a12d2 + . . .+ a1mdm (4.3.8)
A2 = a21d1 + a22d2 + . . .+ a2mdm (4.3.9)

Note this is equivalent to stating that the resultant value of (A1, A2) in a plot such as Fig.
4.4 is the vector sum of the radius vectors to the points (A1i, A2i) corresponding to each
material.

Substituting from equations 4.3.3 and 4.3.4,

A1 = K1

(
ρ1d1
W1

Z4
1 +

ρ2d2
W2

Z4
2 + . . .+

ρmdm
Wm

Z4
m

)
(4.3.10)

A2 = K2

(
ρ1d1
W1

Z4
1 +

ρ2d2
W2

Z4
2 + . . .+

ρmdm
Wm

Z4
m

)
(4.3.11)

Since Z/W is roughly constant, A2 is proportional to the amount of material along the
path of the x-ray beam.

A2 ≈ (constant) (ρ1d1 + ρ2d2 + . . .+ ρmdm) (4.3.12)

The value of A1 increases rapidly with atomic number. Thus, the larger A1/A2, the larger
the average atomic number.

The interpretation of the information from any single projection system is complicated
by two geometrical effects: nonzero source size and finite source to detector distance
[Macovski l975]. The situation is illustrated in Fig. 4.5. The information in the final image
is the convolution of the body transmission with the projection of the source onto the body.
Because the source is not infinitesimally small, the resolution of the system is limited.
Because of finite source to detector distance, the paths of the x-ray beams from the source
are diverging. These geometrical effects do not change the data fundamentally. The
source size effect is negligible if the source is made small enough so that its projected
size is small compared to details of interest in the object. The effect of finite source to
detector distance is to introduce magnification into the final image.

4.4. The Compton Coefficient as a High Voltage Radiograph

The x-ray tube voltages used in most radiology procedures are 150 Kvp or less. Higher
voltages have been suggested for some examinations to improve the visualization of soft
tissue structures overlying bone [Tuddenham 1953]. At conventional energies the photo-
electric effect makes a substantial contribution to the attenuation coefficient of bone. Its
mass attenuation coefficient is therefore much higher than that of soft tissue and the vis-
ibility of soft tissue structures which overly bone is greatly reduced. At higher energies,
the photoelectric contribution becomes negligible and the mass attenuation coefficients
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Figure 4.5.: Geometrical effects in single projection systems.

of these materials become almost equal. There will be a difference between the trans-
mission of bone and soft tissue due to their different densities, but this difference will be
much smaller than at lower energies. Thus the visibility of the soft tissue structures will be
increased.

While high voltage radiography improves the visualization of these structures, it has se-
rious limitations. As shown in Chapter 2, at higher energies the contrast per unit dose de-
creases. Also, the differential cross section for Compton scattering becomes increasingly
peaked in the forward direction as energy is increased. Thus it becomes more difficult
to remove scattered photons using collimators. Finally, the dose is increased because at
higher energies the efficiency of the detector decreases [Ter-Pogossian 1967].

By displaying the line integral of the Compton scattering coefficient A2, an image equiv-
alent to a high voltage radiograph can be produced. In this image the differences between
structures will be determined mainly by differences in density. Thus, the visualization of
soft tissue structures will be increased. The spectra used to extract the energy dependent
information can correspond to conventional x-ray energies and many of the physical lim-
itations of high voltage radiography can be avoided. The energy dependent system will
also measure the photoelectric coefficient line integral and this can be used for selective
material imaging.

4.5. Selective Material Imaging

Selective material imaging can be defined as the calculation of the amounts of particular
materials along the path between the source and a point in the image. In this section, we
show this is strictly possible only under restrictive conditions in a single projection system.
However, by using the ideas of Chapter 2, we develop a slightly different interpretation of
selective material imaging which is generally applicable and which provides a great deal
of information.

Since there are only two pieces of information and these result from spatial averaging,
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selective material imaging in a single projection system is possible only if the object is
composed of two materials of known composition. The information available is described
by equations 4.3.8 and 4.3.9. These equations can be solved for the amounts of materials
d1, d2, . . . , dm only if there are two materials and if the values of (a11, a21) and (a12, a22)
are known.

This limitation has been encountered in practice [Alberi, Kraner, Bradley-Moore, Atkins
1974]. The techniques described in Chapter 1 for measuring the amounts of different ma-
terials using measurements with isotope sources in single projections have never been
able to isolate more than two materials. Even if measurements are made at many en-
ergies, the equations that must be solved to determine the amounts of three materials
become ill-conditioned. The only exception to this rule is materials with K edges in the
diagnostic region. Their discontinuous attenuation coefficient functions cannot be repre-
sented with a two function basis set over the entire diagnostic energy region.

The limitation does not exist in systems, such as will be described in Chapter 5, which
remove spatial averaging. These systems can calculate the values of (a1, a2) at points
within the object. So long as the materials have different average atomic number and
density, the capability of the system to distinguish between materials in different resolution
elements is determined by measurement accuracy.

By changing the interpretation somewhat, the concept of selective material imaging in a
single projection system can be useful even if there are more than two materials present.
This may be seen from the following example. For many purposes, an image of soft tissue
only or bone only would be useful. In a single projection system, this could be produced
only if the body were known to consist of these two materials.

However, we can choose the attenuation coefficient function of any two materials as
a basis set. Suppose we pick water and a particular composition of bone. From the
discussion in Chapter 2, we are guaranteed that the attenuation coefficient function of any
body material can be expressed as a linear combination of our functions

µ(E) = c1µb(E) + c2µW (E) (4.5.1)

where µb(E) and µW (E) are the attenuation coefficient functions of bone and water. Im-
ages of the line integrals C1 or C2 would be close to bone only or soft tissue only images.
Actual soft tissue would contain a contribution from bone and actual bone would contain
a contribution from water, but these would be small.

Because of the theoretical framework that has been developed, the contributions from
the two materials can be interpreted. For example, by looking at the relative contributions
of bone and water, we can decide if a lesion is calcified or simply high density.

4.6. Experimental Tests

The feasibility of selective material imaging with two materials is shown by an experiment
described in Chan, Alvarez, Macovski 1976. This experiment shows that the amounts of
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Figure 4.6.: Apparatus for experiment showing the feasibility of selective material imaging.

bone and soft tissue along the path of an x-ray beam can be accurately calculated from
broad spectrum measurements. The experimental apparatus is shown in Fig. 4.6. It
consists of the x-ray tube source, a filter, an object consisting of bone and water, and a
germanium detector with a multichannel analyzer. The detector was used to measure the
transmitted spectrum. Two measurements were made with different filter materials placed
between the source and the object. The measured spectra were then integrated as a
function of energy to yield the raw data. From this data, the amounts of bone and water
were calculated as described in Chapter 3. A principal source of error was the instability
of the x-ray tube.

The feasibility of the generalized approach to selective material imaging was shown
by an experiment using a scanned system. The experimental apparatus was the scanned
x-ray tube and detector of the EMI machine at the Stanford Medical Center. This apparatus
was described previously in Fig. 3.4. The machine produces two beams as shown in Fig.
4.7. By placing a filter in each beam and using an object that is constant across the two
beams, the data necessary to calculate the line integrals can be measured. Gadolinium
and molybdenum filters were used. Spectra similar to those incident on the object are
shown in Fig. 4.7. These spectra were actually measured on a different tube operated at
the same voltage. The tube in the EMI scanner is not readily accessible for measurements.

The objects that were scanned are shown in Fig. 4.8. The first object scanned was
a test wedge consisting of aluminum and lucite with accurately known dimensions. The
measurements on this object were used to calculate the coefficients in the approximations
to the integral equations as described in Chapter 3. Instead of using the photoelectric and
Compton scattering basis set, the attenuation coefficient functions of aluminum and lucite
were used. The results for an unknown object are then equivalent amounts of these two
materials which have the same attenuation coefficient.

The unknown object was then scanned. The raw data consisted of the transmissions
of the filtered beams at 3 millimeter intervals. At each point, the equivalent amounts of
aluminum and lucite were calculated by solving the approximations to the integral equa-
tions. Typical results are shown in Fig. 4.9. From the equivalent amounts of aluminum and
lucite, the photoelectric and Compton scattering line integrals can be calculated. These
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Figure 4.7.: Spectra in Scanned System

Figure 4.8.: Object scanned in experimental test.
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are also shown in Fig. 4.9.
The unknown object was a piece of lucite with three thicknesses of teflon slabs placed

on it. The features of this object are evident in Fig. 4.9. The “spikes” at the edges of the
teflon slabs are caused by imperfect alignment of the x-ray beam and the pieces of teflon.
At the edges, the two beams are not passing through equivalent materials and the data
is inconsistent. This causes errors in the results. It is also evident that the photoelectric
line integral is noisier than the Compton line integral. This is to be expected from the
theoretical results in Chapter 3.

The consistency of the data can be checked by combining the results so the effect of the
teflon disappears. Suppose the teflon has coefficients (a1T , a2T ) and the lucite (a1L, a2L).
The photoelectric and Compton line integrals at any point will be

A1 = a1TdT + a1LdL (4.6.1)
A2 = a2TdT + a2LdL (4.6.2)

where dT and dL are the teflon and lucite thicknesses. The quantity A1 − bA2 where b is a
constant, can be calculated from the line integrals. It is

A1 − bA2 = (a1T − ba2T )dT + (a1L − ba2L)dL (4.6.3)

By setting b = alT /a2T , the effect of the teflon will disappear and the quantity

A1 − bA2 = (a1L − ba2L)dL (4.6.4)

will depend only on the lucite. Figure 4.10 shows A1 − bA2 for various values of b. For
some value of b, we would expect the result to be constant because the lucite thickness is
constant. Even though the data is somewhat noisy, this condition occurs as shown in Fig.
4.10.

There was considerable drift in the apparatus and the results from trial to trial were not
the same. The EMI scanner is not intended for experimental purposes and it was not
possible to check the quantities of interest for drift during the course of the experiment.
Although there are errors in the results, the experiment demonstrates the feasibility of
generalized selective material imaging.

4.7. Noise Properties of Single Projection Systems

Assuming that Poisson counting noise is the limiting factor, the errors in the estimates of
the line integrals may be calculated as described in Sections 3.5 and 3.6. Poisson count-
ing noise is the limiting factor for common detectors such as NaT scintillation detectors
and film-screen cassettes [Ter-Pogossian 1967]. These detectors convert the x-ray pho-
tons to visible light. The number of light photons produced by an x-ray photon is a random
variable. However, a large number of visible light photons are produced for every x-ray
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Figure 4.9.: Typical results for scans of a teflon and lucite object. Parts (a) and (b) show
the equivalent amounts of lucite and aluminum. Parts (c) and (a) show the
line integrals of the Compton and photoelectric coefficients.
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Figure 4.10.: Selective material imaging of lucite. By choosing the proper value of the con-
stant b, the effect of the teflon can be eliminated and the result is a horizontal
line. The theoretical value for b is approximately 50,000.
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photon and the statistical fluctuations in the measured quantities are determined mainly
by the x-ray photons.

The details of the calculation of errors depend on the particular detector system used. In
general, the detector output will be a nonlinear function of the energy, or the total number
of photons incident during the measurement period. So long as the nonlinear function is
invertible, the maximum likelihood estimate will be the solution of the deterministic equa-
tions with the measured quantities [Van Trees, 1968, p. 70]. Once the nonlinear function
is specified, the errors can be calculated using the Taylor’s series approach of Section
3.5.
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5. Extraction of Energy Dependent
Information in Computerized
Tomography

5.1. Introduction

The information in a single projection system represents the projection of the transmission
of a three-dimensional object onto a two-dimensional image. This is an undesirable situ-
ation since structures of interest can be obscured by other parts of the patient along the
same line of sight. Various types of tomography systems have been invented to remove
the spatial averaging.

Recently, a highly successful form of tomography, known as computerized tomography,
has been introduced. This technique uses a scanned x-ray beam, an electronic detector,
and a computer to calculate an image of a cross section slice through the object. The
technique offers two main advantages. Conventional tomography systems blur the contri-
bution of intervening parts of the object. Computerized tomography systems remove their
effect almost completely. Conventional tomography systems use photographic film as a
detector and, thus, their measurements have limited accuracy. Computerized tomography
systems use electronic detectors and calculate the linear attenuation coefficient extremely
accurately. This allows the radiologist to distinguish various body tissues and fluids by the
values of their linear attenuation coefficient.

Conventional computerized tomography systems attempt to calculate the value of the
linear attenuation coefficient at a single average energy. In this chapter, we discuss tech-
niques for the extraction of energy dependent information in computerized tomography.
This allows the calculation of the values of a1 and a2 at every resolution element in a
cross section slice through the object. An energy dependent computerized tomography
system thus removes both the averaging over energy and depth and extracts the informa-
tion available from an x-ray transmission measurement completely.

5.2. Mathematical Techniques for the Reconstruction of a
Function From its Line Integrals

The image produced by a computerized tomography system is calculated by using the
mathematical technique of the reconstruction of a function from its line integrals. This
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Figure 5.1.: Simple x-ray computerized tomography system.

technique requires the measurement of line integrals through the object at every possi-
ble position and orientation. In a simple system, this is accomplished by simultaneously
scanning a pencil x-ray beam and detector as shown in Fig. 5.1. The detector measures
the total energy of the transmitted photons at each position for a fixed measurement time
and the line integral of the linear attenuation coefficient is calculated from this measure-
ment. For a fixed angle the line integrals are measured by scanning the x-ray tube and
detector across the patient. The apparatus is rotated by a small angle and another set of
measurements are taken. The computer takes the sets of line integrals and calculates the
value of the linear attenuation coefficient at every resolution element in the cross section
of the object. In this section we review the mathematical basis for this calculation.

The variables used in this section are defined in Fig 5.2. The line integrals gϕ(t) are
measured for all angles ϕ, 0 ≤ ϕ < π, and all displacements t. From these measurements,
the two-dimensional function f(x, y) is to be calculated.

This problem was considered and solved rigorously by Radon in 1917. A theorem
developed by Bracewell gives a great deal of insight into the problem. This theorem states
that the Fourier transform of gϕ(t), for constant ϕ, gives the values of the two-dimensional
Fourier transform of f(x, y) along a line through the origin at angle ϕ + π/2. Thus, it is
called the central section theorem (Bracewell 1956).
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Figure 5.2.: Definition of variables in problem of reconstruction from line integrals.
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Figure 5.3.: Fourier transform technique to reconstruct a function from its line integrals.

The theorem may be derived by considering the definition of F (u, v), the Fourier trans-
form of f(x, y):

F (u, v) =

∫∫ ∞

−∞
f(x, y) exp[−j2π(ux+ vy)]dxdy (5.2.1)

The value of this function along the u axis (which is the line v = 0) is

F (u, 0) =

∫ ∞

−∞

[∫ ∞

−∞
f(x, y)dy

]
exp[−j2πux]dx. (5.2.2)

The integral in brackets is a line integral along a line parallel to the y axis and a distance
x from it. It is therefore equal to gπ/2(x)

F (u, 0) =

∫ ∞

−∞
gπ/2(x) exp[−j2πux]dx = Gπ/2(x) (5.2.3)

This result can be easily generalized to give the central section theorem.
This theorem gives an existence proof for the solution of the problem of the reconstruc-

tion of a function from its line integrals. By measuring g(t) for all ϕ and t and then Fourier
transforming for constant ϕ, the values of F (u, v) along all lines through the origin can be
calculated. This gives F (u, v) at all points on the (u, v) plane and by inverse transforming
f(x, y) is uniquely determined for all functions encountered in practical applications. This
technique is actually used to reconstruct f(x, y) in some cases. It is illustrated in Fig. 5.3.

The method in Fig. 5.3 uses two successive Fourier transforms to calculate f(x, y).
From the properties of the Fourier transform, it should be possible to reconstruct f(x, y)
directly from the line integrals by a convolution technique. This can indeed be done
(Bracewell and Riddle 1967) and is illustrated in Fig. 5.4.

Consider the two-dimensional inverse Fourier transform in polar coordinates

f(r, θ) =

∫ π

0

∫ ∞

−∞
|ρ|F (ρ, ϕ)e−j2πρr cos(θ−ϕ)dρdϕ. (5.2.4)
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Figure 5.4.: Reconstruction from line integrals by convolution plus back projection.

From the central section theorem

F (ρ, ϕ) = Gϕ′(ρ), ϕ′ = ϕ+ π/2 (5.2.5)

Substituting this in equation 5.2.4

f(r, θ) =

∫ π

0

∫ ∞

−∞
|ρ|Gϕ′(ρ)e−j2πρwdρdϕ. (5.2.6)

where w = −r cos(θ − ϕ) = r sin(θ − ϕ − π/2) = r sin(θ − ϕ′). Changing the variable of
integration to ϕ′ = ϕ+ π/2

f(r, θ) =

∫ π

0

[∫ ∞

−∞
|ρ|Gϕ′(ρ)e−j2πρwdρ

]
dϕ′ (5.2.7)

The integral in brackets is the one-dimensional Fourier transform of |ρ|Gϕ′(ρ). Applying
the convolution theorem, equation 5.2.7 is:

f(r, θ) =

∫ π

0

[
F−1
1 {|ρ|} ∗ gϕ′

]
dϕ′ (5.2.8)

This equation is the mathematical statement of the convolution back projection tech-
nique. In words, the reconstruction is carried out as follows. For any angle ϕ′ convolve
the line integrals with a function h(t) whose transform is |ρ| . To reconstruct f(r, θ), at a
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point (r, θ), project the value of the convolved function along a line through (r, θ) parallel
to a line through the origin at angle ϕ as illustrated in Fig. 5.4. Do this for all angles ϕ and
sum the projected values of the convolved functions to give the value of f(r, θ).

The results presented so far assume that measurements at all possible angles ϕ and all
displacements t are available. In a practical system, there will only be a finite number of
measurements with a beam of nonzero width. The effect of nonzero beamwidth in a linear
system is to give a reconstructed image which is the convolution of the desired object
with a two-dimensional spatial impulse response [Bracewell 1975]. In a nonlinear system,
such as an x-ray transmission system, there will be some artifacts at discontinuities in the
object [Macovski and Stonestrorn 1975].

If the object is spatially bandlimited, it can be accurately reconstructed with a finite
number of measurements. Of course, any object of finite spatial extent will not be ideally
bandlimited, but its spectrum will drop to negligible values for high enough spatial frequen-
cies. The number of measurements necessary to reconstruct an object may be derived
by using the sampling theorem [Goodman 1968].

Suppose the object has a maximum dimension L and we want to reconstruct it with a
spatial resolution ∆l. Assume the object is then bandlimited with a maximum significant
spatial frequency 1/∆l. The object and its transform are shown in Fig. 5.5. From the
central section theorem, the one-dimensional Fourier transform of the line integrals gives
a line through the two-dimensional Fourier transform of the object. Since the object has
a maximum spatial frequency 1/∆l, by the sampling theorem, it must be sampled with
period ∆l/2 to prevent aliasing. The number of measurements per projection is then

N =
L

∆l/2
=

2L

∆l
. (5.2.9)

Similarly, in order to calculate an inverse Fourier transform accurately, the transform must
be sampled on a grid of side 2/L, where L is the maximum dimension of the object. Thus,
from Fig. 5.5, the angle between projections must be ∆θ = 2∆l/L to give the proper
sampling at the edge of the transform. The number of projection angles is

M =
π

∆θ
= 2πL∆l. (5.2.10)

Note that this gives an oversampled system towards the center of the transform and fewer
angles might be tolerated. Equations 5.2.9 and 5.2.10 give good estimates within a factor
of 2 or 3.
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Figure 5.5.: Number of measurements necessary to reconstruct a spatially bandlimited
object.

5.3. Computer Simulation of Extraction of Energy Dependent
Information Using Computerized Tomography

A computer simulation was performed to illustrate the procedure for extracting energy
dependent information using computerized tomography. The general procedure described
in Chapter 3 was followed. The integral equations were approximated by a power series
with undetermined coefficients. The coefficients were calculated from the values of the
number of transmitted photons through an object with known values of A1 and A2. The
approximations to the integral equations were then solved to give the line integrals A1 and
A2 of the object. From these line integrals, the values of a1 and a2 were calculated using
the techniques described in the previous section.

The object assumed is shown in Fig. 5.6. It is circularly symmetric so only one set of line
integrals had to be calculated. It consists of a bone annulus filled with brain tissue except
for a “lesion” at the center. The lesion was assumed to have an attenuation coefficient
similar to fat. Experimentally measured attenuation coefficients were used for the tissues
[Phelps, Hoffman, Ter-Pogossian 1975] and the bone [ICRU 1970].

The data consisted of the number of photons transmitted calculated at 160 points across
the object. An experimentally measured 105 Kvp x-ray tube spection [Epp and Weiss
1966] was assumed. The detector used single level pulse height analysis with a 58 Kev
threshold energy. This sharp threshold is an idealization which can be almost fully realized
by a semiconductor detector. A lower resolution detector will have a spectral response
equal to the convolution of the assumed rectangular response functions with its energy
resolution impulse response. So long as the Jacobian of the integral equations is not
zero, this will not affect this deterministic simulation. As discussed in Chapter 3, the lower
resolution system will have a somewhat larger error due to counting noise.
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Figure 5.6.: Object used in computer simulation

At each point across the object, the equations

I1 =

∫
S(E)g1(E) exp[−A1f1(E)−A2fKN(E)dE (5.3.1)

I2 =

∫
S(E)g2(E) exp[−A1f1(E)−A2fKN(E)dE (5.3.2)

had to be solved. This was carried out by approximating them by:

lnI1 = b1A1 + b2A2 + b3A
2
1 + b4A

2
2 + b5A1A2 + b6A

3
1 + b7 (5.3.3)

lnI2 = c1A1 + c2A2 + c3A
2
1 + c4A

2
2 + c5A1A2 + c6A

3
1 + c7 (5.3.4)

As discussed in Section 3.7, this gives accurate results. The coefficients {bi} and {ci}
were calculated by fitting the values of I1 and I2 for objects with known values of A1

and A2 with least squares techniques. The resultant cubic equations were then solved
numerically at every point using the technique described in Appendix B.

Three reconstructions were carried out. They are the values of a1 and a2 at points in
the cross section and a reconstruction assuming ln(I1 + I2) is a line integral. The latter
simulates a conventional intensity only reconstruction. The results are shown in Fig. 5.7.

The density of the lesion at the center was adjusted so that at the average energy of the
transmitted spectrum, 65 Kev, its attenuation coefficient is equal to that of the surrounding
tissue. The lesion is therefore not visible in the intensity only reconstruction. Since its
attenuation coefficient is different at other energies, it is quite visible in the photoelectric
and Compton scattering reconstructions.
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Figure 5.7.: Results of computer simulation

70



5. Energy Dependent Information in CT

Also evident in the intensity only reconstruction is a “cupping” near the edge of the
skull. This is a spectrul shift artifact. By reconstructing ln(I1 + I2) we are assuming a
single average energy exists so that the transmission integral is approximated by

I1 + I2 =

∫
S(E) exp

[
−
∫
µ(x, y;E)ds

]
dE ≈ I0 exp

[
−
∫
µ(x, y;E)ds

]
(5.3.5)

Because of beam hardening, the average energy increases after the bean traverses large
amounts of material. The single average energy approximation is thus inaccurate and
leads to artifacts in the reconstruction. Energy dependent techniques provide a general
method of computerized tomography which does not contain this artifact. Corrections for
spectral shift artifacts are important features of computerized tomography systems and
are discussed in Chapter 6.

The spikes evident at the junctions of different structures are artifacts of the reconstruc-
tion algorithm. As discussed in the previous section, this assumes a spatially bandlimited
object. Because of the sharp edges, the object is not bandlimited and this causes the
artifact. The phenomenon is quite similar to “ringing” in temporal systems.

5.4. Display of Energy Dependent Information

The results of an energy dependent computerized tomography system are two images. At
every resolution element in the cross section there are associated the values of a1 and a2
for the material in that volume, The information may be displayed as two separate images
or combined in various ways.

One possibility is a color display. One primary color might represent a1 and another a2.
The result at any point will be a shade of color which is indicative of the values of a1 and
a2 at that point.

Another possibility is to use the values of a1 and a2 and the functions f1(E) and fKN(E)
to calculate the linear attenuation coefficient at any point

µ(E) = a1f1(E) + a2fKN(E). (5.4.1)

Any energy within the diagnostic region may be used. Figure 5.8 shows the attenuation
coefficient in the computer simulation described in the previous section calculated at 40
Kev.

Selective material imaging is also possible. The data can be combined in such a way
that the contribution of any particular material is zero. This may be done by taking a
linear combination a1 − ba2 with b = a1m/a2m where (a1m, a2m) are the coefficients of the
material. Figure 5.9 shows the results when b is chosen so the contribution of water is
zero.
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Figure 5.8.: Reconstructed image valuesalong a radial line.

Figure 5.9.: Linear combination of reconstructed values along a radial line. The cofficients
were chosen to elmininate water as discussed in the text.
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5.5. Counting Noise in Energy Dependent Computerized
Tomography Systems

The values of a1 and a2 for typical body materials should be as shown in Fig. 2.13.
The diagnostic utility of this information cannot be determined unless the errors in the
measurements are known. In this section we consider the errors in the measurement of
a1 and a2 due to counting noise.

In terms of noise properties, the linear reconstruction techniques such as convolution
plus back projection, the Fourier transform method, and others are similar [Barrett, Gor-
don, Hershel 1976]. The convolution plus back projection technique is perhaps the most
widely used in x-ray computerized tomography and will be discussed here. This technique
consists of convolving the line integrals at any particular angle with a function h. The con-
volved functions are then back projected and summed to yield the reconstructed image at
any point.

Unfortunately, the noise in the reconstructed value depends on the original object. In
order to get an estimate of the noise some assumptions must be made. The noise at the
center of a large uniform object will be calculated. If Aϕ(k) are the line integrals at angle
ϕ and position k, the reconstructed value at the center of the image in discrete form will
be

a =

M∑
l=1

N/L∑
k=−N/2

Aϕl
(k)h(k) (5.5.1)

Assuming the object is large and uniform, σ2A(k) will be constant over the region where
h2(k) is nonzero. Thus for independent measurements

σa = σ2AM

N/L∑
k=−N/2

h2(k) (5.5.2)

Since h is known, M and N can be calculated from the formulas in Section 5.2, and can
be calculated using the techniques of Chapter 3, the expression for the variance of the
estimate can be evaluated for any particular situation. From the discussion in Chapter 3,
the bias will be negligible compared to the standard deviation of the error.

In an energy dependent system, there are two numbers associated with each measure-
ment. The errors in these numbers can be used to define regions around each point in
a plot such as Fig. 2.13 where a measured value is likely to occur. If these probable re-
gions are small compared to the distance between points, the measurement system can
distinguish the materials.

These regions may be considered to be contour lines of a probability distribution. For
large numbers of counts, the errors will be jointly normally distributed for two reasons.
First, for large numbers of counts, the relative spread of the number of counts decreases
and a linear approximation accurately describes the system. Also, as the number of counts
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increases, their distribution becomes closer to a Gaussian. Therefore, the errors will be
normally distributed since they become linear combinations of normal random variables.
The functions f1(E) and fKN(E) are not orthogonal so the errors are correlated and the
contours of equal probability are ellipses with major axes not parallel to the a1 or a2 axes.
These ellipses will be approximated by rectangles.

Figure 5.10 shows the data of Fig. 2.13. Also shown is a rectangle with sides σa1 and
σa2 as an error estimate. The system assumed is the same as that described in Section
3.9. An object 20 cm thick was assumed.

The dose may be roughly approximated as follows. The total energy deposited is
(4ergs) ×M × N . Assuming 2mm resolution, M = 157 and N = 200. An object 20 cm
in diameter, 1 cm thick with an average density near 1gm/cm3 is also assumed. The
average dose will then be approximately

Dose =
Energy
Mass

≈ 4 rad. (5.5.3)
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Figure 5.10.: Values of a1 and a2 for various tissues with estimate of error in a typical
system. The standard deviation of the errors for each quantity are shown in
the rectangle at the upper left.
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6. Spectral Shift Artifacts In X-Ray
Computerized Tomography

6.1. Introduction

The data needed by a computerized tomography system are the line integrals of the linear
attenuation coefficient. The quantity actually measured by the detectors used in these
systems is the intensity I of the photons transmitted through the body. From this mea-
surement the line integrals

∫
µ(x, y;E)ds must be calculated. If a monoenergetic source

were used with a zero width beam, then these quantities would be related by

I = I0 exp

[
−
∫
µ(x, y;E)ds

]
(6.1.1)

and it would be relatively simple to calculate the line integral from the measured quantity.
Monoenergetic sources, however, do not produce a sufficient number of photons per sec-
ond to permit accurate measurements on objects of medical interest in a sufficiently short
time. Thus broad spectrum x-ray tube sources must be used. In this case, the line integral
and the intensity are related by the integral equation

I =

∫
S(E) exp

[
−
∫
µ(x, y;E)ds

]
dE (6.1.2)

and it is a difficult problem to solve for the line integral.
A technique for attempting to solve this equation for the line integral is to assume that

an average energy E exists so that equation 6.1.2 may be approximated by

I = I0 exp

[
−
∫
µ(x, y;E)ds

]
(6.1.3)

This is not a good approximation. Because of beam hardening, the average energy is not
constant but increases as the beam traverses more material. This is shown in Fig. 6.1.
The spectrum of an x-ray beam is plotted after transmission through various thicknesses
of bone. Note that the average energy increases as the bone thickness increases.

The errors caused by making a single average energy approximation can lead to sig-
nificant artifacts in the reconstruction [Macovski, Alvarez, Chan, Stonestrom 1975]. Since
the attenuation coefficient is a function of energy, its apparent value will be different for
beams that have passed through different amounts of material. As shown in Fig. 6.2,
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Figure 6.1.: X-Ray spectrum after transmission through various thicknesses of bone. The
spectra are normalized to have the same maximum value.

this will lead to inconsistent values in different measurements of line integrals and thus to
errors in the reconstruction. In a scan of the head, the errors should be greatest near the
skull. In this region, rays tangential to the skull pass through large amounts of bone while
perpendicular rays have much less bone in their paths. As shown in Fig. 6.3, this leads to
a “cupping” artifact in the reconstruction near the skull. In part a, a cross section of the re-
construction with a monoenergetic source is shown. Part b shows the cross section of the
reconstruction with a broad spectrum source using a single average energy assumption.
This artifact has been seen experimentally. Figure 6.4 shows reconstructions of a brain
and skull on an EMI machine [Gado and Phelps 1975]. Reconstructions with the skull
have significant artifacts. The EMI machine makes some attempt to correct the artifact
[Hounsfield 1975] but apparently it is not completely effective.

In this chapter we discuss techniques for calculating line integrals from broad spectrum
measurements. We present a unified analysis of the techniques currently used which
shows the effects of various system parameters on their accuracy. We consider the gen-
eral problem of calculating the line integral and show that it cannot be calculated from
a single broad spectrum intensity measurement. Finally, we show that energy spectral
analysis provides an accurate general technique for calculating the line integral.
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Figure 6.2.: Measurement of line integrals through different object thicknesses.

Figure 6.3.: Artifacts for annulus object. (a) Reconstruction with accurate line integrals.
(b) Reconstruction using single average energy approximation. A logarithmic
vertical scale is used.
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Figure 6.4.: Reconstructions on an EMI brain scanner showing artifacts.

6.2. Techniques Currently Used For Calculating Line Integrals

Most of the techniques currently used for calculating line integrals are based on making
the average energy approximation more accurate. The techniques that will be discussed
are prefiltering, constant path length water baths, and linearization.

As shown in Fig. 6.1, an x-ray spectrum becomes more monoenergetic after passing
through a material. Since a narrow spectrum beam produces smaller spectral shift arti-
facts, the technique of prefiltering consists of placing a filter material between the x-ray
tube and the patient. This technique reduces spectral shift artifacts, but it introduces sev-
eral problems. One problem is that it reduces the available intensity of the x-ray source.
Because of the desirability of shortened scan times, the source intensity is an important
limiting factor in the design of a computerized tomography system. Another problem is that
prefiltering raises the average energy of the incident spectrum. As discussed in Chapter 2,
the contrast per unit dose has a maximum as a function of energy. Depending somewhat
on the object thickness, most computerized tomography systems operate with energies
above this maximum so increasing the average energy decreases the available contrast
per unit dose.

Another technique for decreasing spectral shift artifacts is the use of a constant path
length water bath. This is illustrated in Fig. 6.5. The effectiveness of this technique may
be seen by writing the expression for the transmitted intensity. Assume the object has
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Figure 6.5.: Use of a constant path length water bath in a computerized tomography
system.

attenuation coefficient µ(E), length l, and is placed in a water bath with total length d. The
transmitted intensity will be

I =

∫
S(E) exp [−lµ(E)− (d− l)µw(E)] dE (6.2.1)

In this expression, µw(E) is the linear attenuation coefficient of water. Rewriting the
equation:

I =

∫
S(E) exp [−dµw(E)− l[µ(E)− µw(E)]] dE (6.2.2)

From this equation, we can see that the water bath has two effects. The first term in the
exponential shows that a water bath is equivalent to having a water prefilter of thickness
d. The second term in the exponential shows that the object reconstructed will not be
the original object. It will be an equivalent object with an attenuation coefficient equal to
the difference between that of the original object and water. For biological materials, this
tends to reduce the dynamic range of the quantity reconstructed. This decreases the shift
in the average energy and, therefore, the magnitude of the spectral shift artifact.

A constant path length water bath is effective in reducing spectral shift artifacts, but it
also has some problems. It increases the dose because of the attenuation of the water
between the patient and the detector. It is cumbersome to implement especially in a body
scanner configuration.

In the single average energy approximation, the line integral is calculated by taking
the logarithm of the measured intensity. If an object consisting of a single material is
measured with a broad spectrum source, the logarithm will be a nonlinear function of the
line integral. In this case the line integral is∫

µ(x, y;E)ds = lµ(E) (6.2.3)
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Figure 6.6.: Nonlinear relationship between line integral and logarithm of intensity for a
broad spectrum source.

where l is the length of the material along the x-ray beam path. This nonlinearity is shown
in Fig. 6.6. Since the function is very well-behaved it is easy to find an inverse and solve
for the length, and, hence, the line integral. This is the technique of linearization.

This technique has several theoretical and practical difficulties. First, it assumes the
object consists of a single material. This is certainly not the case for the human body. If
a water bath is used, the body might be modeled as consisting of bone and water for the
purpose of correcting spectral shift artifact. In this approximation, the object reconstructed
will be bone since the system will reconstruct an object equal to the difference between the
original object and water. Thus we have a single material system and an inverse function
can be found to correct the line integrals. The bone-water approximation is only for the
purpose of correcting artifacts. Once the line integrals are corrected for large errors due
to spectral shift, the original variations in the object are reconstructed.

Even with a water bath system, there are difficulties. The inverse function depends
on the composition of the bone which is not the same in all individuals. We will show in
Section 6.4 that it is not possible to define a single inverse function which will be accurate
for all compositions of materials. Therefore, linearization can be applied only under very
restrictive assumptions. There are two cases. The object consists of a single material.
The object consists of water plus another material and a constant path length water bath
is used. The inverse function will depend on the tube voltage, spectrum, and the material.
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Figure 6.7.: Experimental configuration assumed in analysis.

6.3. Analysis of Conventional Techniques for Calculating Line
Integrals

The efficiency and accuracy of the techniques described in the previous section will be
analyzed in this section. This will be done by deriving an expression for the logarithm of
the transmitted intensity. The expression contains a term linear in the line integral which
yields an artifact free reconstruction and a nonlinear term which leads to spectral shift
artifacts. This technique is useful because it deals with the source of artifacts at the line
integrals and is independent of the reconstruction technique.

The situation analyzed is shown in Fig. 6.7. There is a prefilter with thickness lf and at-
tenuation coefficient µf (E). The x-ray tube spectrum is I(E) and the detector is assumed
to measure the total energy of the photons.

For a given line, the line integral is a function of energy only:

L(E) =

∫
µ(x, y, z;E)ds (6.3.1)

The intensity of the transmitted beam is then

I =

∫ Em

0
I(E)e−L(E)e−lfµf (E)dE. (6.3.2)

where Em is the maximum energy of the incident spectrum. This is a Laplace integral
[Copson 1965]. As the filter attenuation becomes large, the main contributions to the
transmitted intensity come from the point where µf (E) attains its minimum value. Since
µf (E) is a decreasing function, the minimum occurs at the end point of the region of
interest, Em. We can derive an asymptotic approximation to the integral which is accurate
for large attenuation. Since the attenuation must be large or spectral shift artifacts will
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ruin the reconstruction, this assumption is valid and the approximation will be accurate for
practical systems.

In Section 6.6 of this chapter, we calculate an approximation to the logarithm of the
transmitted intensity. The resultant expression is

− ln
I

IL=0
= L(Em) +

2L′(Em)

lfµ
′
f (Em)

−

[
L′(Em)

lfµ
′
f (Em)

]2
(6.3.3)

where a primed quantity denotes a derivative with respect to energy. Although this expres-
sion is valid for the case of many materials, its interpretation is made easier by considering
the case of an object consisting of a single material. In this case

L(E) = lµ(E) (6.3.4)

where µ(E) is the linear attenuation coefficient of the object and l is the thickness of ma-
terial along the x-ray beam path. This thickness is the variable quantity. The computerized
tomography system attempts to measure the thickness for all orientations and positions
across the object and reconstruct the object from these measurements.

For the single material case, the logarithm of the transmitted intensity is:

− ln
I

IL=0
= l

[
µ(Em) +

2µ′(Em)

lfµ
′
f (Em)

]
− l2

[
µ′(Em)

lfµ
′
f (Em)

]2
(6.3.5)

The first term is proportional to the desired quantity l. It shows that the average energy
will be somewhat less than Em. This is physically reasonable. The first term is linear so it
leads to an artifact free reconstruction. The second term is proportional to l2. Since this
is nonlinear, it leads to artifacts in the reconstruction.

The accuracy of this approximation is shown in Fig. 6.8. This shows the computer
simulation of the reconstruction of an annular object in three cases. In part b the object
is reconstructed with accurate line integrals. In part c the line integrals are calculated by
taking the logarithm of the transmitted intensity. In part d a quadratic approximation such
as equation 6.3.5 is used. Note the cupping near the annular ring in parts c and d. This is
due to spectral shift. The size of the artifact is the same in c and d so the approximation
is accurate. The coefficient of the quadratic term used in these calculations is .0026 cm2

while that predicted by equation 6.3.5 is .0018 cm2. The expressions developed from the
asymptotic approximation do not give the magnitude of the error term exactly. They are
valuable because they show the functional of the behavior of the error term with the system
parameters.

The effectiveness of prefiltering can be seen directly from equation 6.3.3. The magni-
tude of the artifact will decrease as the square of the inverse of the filter thickness. Since
the transmission of the filter decreases exponentially with its thickness, there is a tradeoff
between the size of the artifact and the effective intensity of the source. The dependence
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Figure 6.8.: Accuracy of quadratic approximation to logarithm of transmitted intensity.
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Figure 6.9.: Magnitude of artifact as a function of tube voltage. The object is ICRU bone
and a water bath is assumed.

of the artifact with prefiltering on tube voltage is shown in Fig. 6.9. The artifact decreases
with increasing tube voltage. Increasing the tube voltage, however, increases the average
energy and thus decreases the contrast per unit dose.

If a constant path length water bath is used equation 6.3.3 is still applicable with

L(E) =

∫
µ(x, y, z;E)ds− dµw(E) (6.3.6)

and
lfµf (E) = dµw(E) (6.3.7)

where d is the length of the water bath. Substituting these in equation 6.3.3 yields an
expression for the logarithm of the transmitted intensity. The quadratic term will be

Quadratic term =

[∫
µ′(x, y, z;Em)ds− µ′w(Em)

dµ′w(Em)

]2
(6.3.8)

The term decreases as l/d2. The nonlinear term is also smaller than in a system without
a water bath because of the subtraction of the µ′w(Em) term.

The effectiveness of linearization is also evident from 6.3.3 and 6.3.5. The coefficient of
the quadratic term depends on [µ′w(Em)]2 and therefore on the composition of the material.
An inverse function suitable for one material will be inaccurate for a different material.
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6.4. Calculation of Line Integrals From Broad Spectrum Data

The discussion of the previous section was based on techniques which attempt to calcu-
late the line integral by making the single average energy approximation more accurate.
Are there other techniques which can be used to calculate the line integral. In this section
we show that the line integral cannot be calculated from a single intensity measurement
except in the situations described in Section 6.2, where linearization is possible or if a
monoenergetic source is used.

The proof of this statement is simplified by using the two function basis set introduced
in Chapter 2. In terms of A1 and A2, the line integral of the linear attenuation coefficient is∫

µ(x, y, z; e)ds = A1f1(E) +A2fKN(E) (6.4.1)

The line integral at a fixed energy will be a linear combination of A1 and A2. The problem
may then be stated mathematically as follows. Is there any way to calculate a linear
combination of A1 and A2 from a single intensity measurement, I ?

I(A1, A2) =

∫
S(E) exp [−A1f1(E)−A2fKN(E)] dE. (6.4.2)

We will show that an invertible function g does not exist such that

g [I(A1, A2)] = k1A1 + k2A2 (6.4.3)

for the case where the object consists of more than one material. The k1 and k2 are
constants. The proof is done in two steps. First, we will show that if g exists, then the
contour lines of I(A1, A2) must be straight lines. Next we will show that the contour lines
of I(A1, A2) are not straight lines. This completes the proof by contradiction.

Consider the composite function h(A1, A2) defined by

h(A1, A2) = g [I(A1, A2)] (6.4.4)

If g exists then h(A1, A2) = g[I(A1, A2)] = k1A1 + k2A2. The contour lines of h defined by
h(A1, A2) = constant are straight lines. The function g is assumed to be invertible so, if
h(A1, A2) is equal to a constant, then I(A1, A2) must also be equal to a unique constant.
Conversely, if I(A1, A2) is equal to a constant, then, since g is invertible, h(A1, A2) must
be a unique constant. This shows that if g exists and is invertible then the sets of points
[A1, A2|I(A1, A2) = K1 = constant] and [A1, A2|h(A1, A2) = g(K1) = constant] are in-
cluded in each other. They must then be identical and the contour lines of I(A1, A2) are
straight lines.

The contour lines of I(A1, A2), however, are not straight lines in general. This is evident
empirically from the fact that a power series with quadratic and cubic terms must be used
to accurately represent lnI(A1, A2) if a broad spectrum source is used. It will be shown
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to result from the fact that f1(E) and fKN(E) are linearly independent. Any set of basis
functions must be linearly independent.

The equation of the contour lines of I is

I(A1, A2) =

∫
S(E) exp [−A1f1(E)−A2fKN(E)] dE = K1 = constant (6.4.5)

Differentiating this expression implicitly gives the value of the slope of the contour line
through any point (A1, A2)

dA1

dA2
= −

∫
fKN(E)S(E) exp [−A1f1(E)−A2fKN(E)] dE∫
f1(E)S(E) exp [−A1f1(E)−A2fKN(E)] dE

(6.4.6)

If a contour line is a straight line then this slope must be a constant and equal to, say, α
along the straight line A2 = αA1 + β. That is

dA1

dA2
= α = −

∫
fKN(E)S(E) exp [−A1f1(E)−A2fKN(E)] dE∫
f1(E)S(E) exp [−A1f1(E)−A2fKN(E)] dE

(6.4.7)

for all A1. Defining

u(E) = S(E) exp [−A1f1(E)− αA1fKN(E)− βfKN(E)] (6.4.8)

this equation may be written in bracket notation as

α = −〈fKN, u〉
〈f1, u〉

= constant (6.4.9)

This must be true for all possible functions u. In words, this states that in the space of all
possible u functions f1 and fKN are linearly dependent. This will not be true unless the
space is degenerate. Thus the contour lines are not straight lines and g does not exist.

The cases where the line integral can be calculated from an intensity measurement are
instructive. There are two cases. The spectrum is monoenergetic or the object effectively
consists of one known material. If the spectrum is monoenergetic, then the contour lines
of I(A1, A2) are straight lines. From 6.4.8 their slope will be

slope = −fKN(E0)

f1(E0)
=
dA2

dA1
(6.4.10)

where E0 is the energy of the spectrum. If the object consists of one material then A1 and
A2 must lie on a straight line through the origin and the space {u} is degenerate.
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6.5. Calculation of Line Integrals Using Energy Spectral
Analysis

The techniques presented in Chapter 5 for extracting energy dependent information in
computerized tomography may also be considered to be techniques for accurately cal-
culating a reconstructed image free of spectral shift artifacts. As such, the techniques
have several advantages. They are general techniques which are effective for all body
materials. They extract more information than conventional techniques. They do not re-
quire prefiltering or constant path length water baths and therefore make better use of the
source intensity.

Another consideration is patient dose. This is a complicated situation. At first glance,
more dose seems necessary to achieve useable accuracy with an energy dependent sys-
tem than with a conventional system. This is not necessarily true. For example, a con-
stant path length water bath is used in some conventional systems. The water between
the patient and the detector absorbs x-rays and, for a given accuracy in the measurement,
causes more patient dose. For example, a distance of 3 cm of water approximately dou-
bles the dose. Also, the extra information extracted by energy dependent techniques may
eliminate some procedures which cause extra dose. This is the case with conventional
computerized tomography.

6.6. Application of Asymptotic Approximation Theory to the
Transmission Integral

The integral that must be evaluated is given in equation 6.3.2

I =

∫ Em

0
I(E)e−L(E)e−lfµf (E)dE. (6.6.1)

We can use Watson’s Lemma to derive an approximation to this integral which becomes
more accurate as the filter attenuation lfµf (Em) becomes large. This theorem [Copson
1965] states that if Φ(t) is analytic for |t| < R and |Φ(t)| < Kebt for fixed K and b when
|t| ≥ R then ∫ ∞

0
Φ(t)e−ztdt ∼

∞∑
m=1

αmΓ(m)z−m (6.6.2)

where the αm are the coefficients in the Taylor’s series of Φ(t)

Φ(t) =
∞∑

m=1

αmt
m−1 for |t| < R. (6.6.3)

The symbol ∼ denotes an asymptotic approximation and Γ(m) is the gamma function
which for integers has the value Γ(m+ 1) = m!
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In order to apply the theorem, equation 6.6.1 has to be manipulated to the form of the
left hand side of equation 6.6.2. This may be done by making the substitutions:

τ = µf (E) (6.6.4)

t = τ − µf (Em). (6.6.5)

The result is

I = e−lfµf (Em)

∫ ∆µ

0

I[E(t)]

−µ′f [E(t)]
e−L[E(t)]e−lf tdt (6.6.6)

where a prime denotes a derivative with respect to E and where ∆µ = µf (0) − µf (Em).
But for any material µf (O) = ∞, thus ∆µ = ∞ and the integral in 6.6.6 is in the form
necessary to apply Watson’s Lemma with

Φ(t) =
I[E(t)]

−µ′f [E(t)]
e−L[E(t)] (6.6.7)

As t → 0, E → Em and the functions I, µ′f , L are differentiable if the attenuation coeffi-
cients do not have K edges in this region. This is certainly the case for body materials.
As t → ∞, E → 0 and both µ′f (E) and L(E) approach infinity while I(E) remains finite.
Thus Φ(t) → 0 as t → ∞ and |Φ(t)| < Kebt for a finite K and b = 0 when |t| ≥ R. Both
hypotheses of Watson’s Lemma are thus satisfied.

The coefficients {αm} are given by Taylor’s Theorem

α1 = Φ(0)

α2 =
dΦ

dt

∣∣∣∣
t=0

α3 =
1

2

d2Φ

dt2

∣∣∣∣
t=0

α4 =
1

6

d3Φ

dt3

∣∣∣∣
t=0

(6.6.8)

The region near t = 0 corresponds to the energy region near the upper cutoff Em of the
spectrum. As shown in Fig. 6.1 , the spectrum in this region is very accurately approxi-
mated by a linear function

I(E) = β(Em − E) (6.6.9)

Since we are only interested in the behavior for E < Em, the approximation is valid. The
constant β depends on the anode material. Using this result, the derivatives in equa-
tion 6.6.8 may be evaluated. The results are

α1 = 0 (6.6.10)
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α2 =
βe−L(Em)

[µ′f (Em)]2
(6.6.11)

α3 =
1

2

[
3βh(Em) + 2βL′(Em)

] e−L(Em)

[µ′f (Em)]3
where h(E) =

µ′′f (E)

µ′f (E)
(6.6.12)

α4 =
1

6

[
− 3βh′(Em) + 11βh(Em)2 − 3βL′′(Em)

+ 12βh(Em)L′(Em) + 3βL′2(Em)

]
e−L(Em)

[µ′f (Em)]4
(6.6.13)

Substituting these results in 6.6.2 yields

I =
β

[lfµ
′
f (Em)]2

[1 + γ(L)] exp [−lfµf (Em)− L(Em)] (6.6.14)

where

γ(L) = −[3h(Em) + 2L′(Em)]
1

lfµ
′
f (Em)

+
[
−3h′(Em) + 11h(Em)2 − 3βL′′(Em) + 12h(Em)L′(Em)

]
× 1

[lfµ
′
f (Em)]2

+ 3

[
L′(Em)

lfµ
′
f (Em)

]2
The quantity reconstructed in a computerized tomography system is −ln I/IL=0. This is,
from equation 6.6.14

− ln
I

IL=0
= L(Em)− ln[1 + γ(L)] + ln[1 + γ(0)] (6.6.15)

If lfµf is large then γ(L) is small and

ln[1 + γ(L)] = γ − 1

2
γ2 (6.6.16)

Thus 6.6.15 becomes

− ln
I

IL=0
= L(Em) +

2L′(Em)

lfµ
′
f (Em)

−

[
L′(Em)

lfµ
′
f (Em)

]2
(6.6.17)

where terms of order (1/lfµ′f )
2 are neglected in the linear part and order (1/lfµ′f )

4 are
neglected in the quadratic part.
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7. Conclusion

The main contribution of this thesis is the formulation of a theoretical framework for the
problem of extracting energy dependent from x-ray transmission measurements. This
formulation can be used in two ways. First, it shows the limitations of the information that
can be derived from energy dependent measurements. Also, it can be used to derive
techniques for calculating complete energy dependent information from relatively simple
low resolution measurements.

A statistical model for the problem of estimating energy dependent information from
measurements with low energy resolution is another contribution of this thesis. The statis-
tical model is used to derive an optimum procedure for calculating the energy dependent
information. It is also used to calculate errors in the measurement for a given patient dose.
The considerations of system complexity and patient dose are of major importance in a
medical radiography system.

A third contribution of this thesis is a set of techniques for the extraction and utilization of
energy dependent information in single projection and computerized tomography systems.
These techniques require relatively simple modifications of the conventional systems and
produce a great deal more information.

In computerized tomography, energy dependent techniques can be used to eliminate a
major problem: the spectral shift artifact. An analysis of the techniques used to correct
this artifact in conventional systems is a fourth contribution of this thesis. The analysis is
independent of the reconstruction technique and shows the dependence of the magnitude
of the artifact on the parameters of the system.

Future work in this field should have two main emphases: the design of practical medical
radiography systems using the results in this thesis and the extension of the results. The
application of the results can also lead to interesting theoretical problems such as the
characterization of instabilities in x-ray systems and techniques for the solution of the
estimator equations in the presence of these instabilities. The results in this thesis can
be extended to include high atomic number materials and energy regions larger than the
currently used diagnostic energy region.
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A. Solution of Estimator Equations by
Newton-Raphson Method

The Newton-Raphson method for finding the root of an equation is discussed in most
calculus textbooks. The method is iterative. In attempting to solve the equation,

F (x) = 0 (A.0.1)

if the nth estimate of the root is x, the (n+ l)st estimate is

xn+1 = xn − F (xn)

F ′(xn)
(A.0.2)

The prime denotes a derivative with respect to x. The conditions for convergence of this
method are [McCracken and Dorn, 1964]:

1. the initial guess is sufficiently close to a root of F (x) = 0.

2. F ′′(x) is not excessively large.

3. F ′(x) is not too close to zero.

The Newton-Raphson method may be generalized to solve two equations in two unknowns

F (x, y) = 0 (A.0.3)
G(x, y) = 0 (A.0.4)

Suppose the nth guess is (x, y). Expanding F and G in Taylor’s series about this point:

F (x, y) = F (xn, yn) + (x− xn)
∂F

∂x
+ (y − yn)

∂F

∂y
+ . . . (A.0.5)

F (x, y) = G(xn, yn) + (x− xn)
∂G

∂x
+ (y − yn)

∂G

∂y
+ . . . (A.0.6)

If these series are truncated as written and F (x, y) = 0 and G(x, y) = 0, two simultaneous
linear equations for (x − xn) and (y − yn) result. Their solution gives the value for the
(n+ l)st iteration:

xn+1 = xn −
[
F (xn, yn)

∂G

∂y
−G(xn, yn)

∂F

∂y

]
/J (A.0.7)

yn+1 = xn −
[
F (xn, yn)

∂G

∂x
−G(xn, yn)

∂F

∂x

]
/J (A.0.8)
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A. Solution of Estimator Equations

where
J =

∂F

∂x

∂G

∂y
− ∂F

∂y

∂G

∂x

The estimator equations are:

F (A1, A2) = lnI1 + b1A1 + b2A2 + b3A
2
1 + b4A

2
2 + b5A1A2 + b6A

3
1 + b7 = 0 (A.0.9)

G(A1, A2) = lnI1 + c1A1 + c2A2 + c3A
2
1 + c4A

2
2 + c5A1A2 + c6A

3
1 + c7 = 0 (A.0.10)

The values of lnI1 and lnI2 are known and these equations must be solved for A1 and A2.
Since these are polynomials, the expressions for the derivatives can be easily derived.

The initial guesses A1,0 and A2,0 were derived from these equations by dropping all the
nonlinear terms. The resultant linear equations

b1A1 + b2A2 = lnI1 − b7 (A.0.11)
c1A1 + c2A2 = lnI2 − c7 (A.0.12)

can be easily solved.
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B. Least Squares Curve Fitting for
Determining Values of a1 and a2 from
Experimental Data

The values of a1 and a2 may be determined from experimental measurements of the linear
attenuation coefficient at different energies. Since there are only two coefficients, mea-
surements at two energies are sufficient to determine their values. Usually, measurements
at many more than two energies are available and some kind of curve fitting may be used
to increase the accuracy of the values of a1 and a2.

In this appendix, the technique for least squares curve fitting is described [Hamming,
1973]. This technique is widely used and easy to apply. The justification for the use of
this technique is the fit to the experimental data. This should be about as accurate as the
measurements themselves.

Suppose that measurements of the linear attenuation coefficient µ(Ej) are available at
energies Ej , j = l, 2, . . . , N . The problem is to choose values of a1 and a2 that minimize
the sum of the squares of the difference between µ(Ej) and

µ̂(Ej) = a1f1(Ej) + a2f2(Ej). (B.0.1)

In our case, f1(E) = 1/E3 and f2(E) = fKN(E). The squared error is

Error = x2 =

N∑
j=1

[
2∑

i=1

aifi(Ej)− µ(Ej)

]2
Wj (B.0.2)

where Wj are weighting factors to be set later. Differentiating with respect to a1 and a2
and setting the result equal to zero yields the set of equations

N∑
j=1

2∑
i=1

aiWjfi(Ej)fk(Ej) =
N∑
j=1

2∑
i=1

µ(Ej)fk(Ej)Wj , k = 1, 2 (B.0.3)

Defining the matrix U with elements ui,k =
∑N

j=1 fi(Ej)fk(Ej)Wj and the vectors and ~a
and ~T with elements a1 and a2, and Tk =

∑
j=1Nµ(Ej)fk(Ej)Wj , equations B.0.3 may

be written
U~a = ~T (B.0.4)
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B. Least Squares Curve Fitting

so long as the basis functions f1(E) and f2(E) are linearly independent over the set of
energies {Ej}, the determinant of U is nonzero [Hamming, 1973] and equation B.0.4 can
be solved for a1 and a2.

Because of the large dynamic range of the data, a set of weights equal to the measured
values of the attenuation coefficients was used. That is Wj = 1/µ(Ej). The curve fitting
procedure thus tends to minimize the square of the fractional error.
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