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An improved parallel projection image reconstructor for
Matlab

This post describes a replacement for iradon for Matlab and Octave. The new function,
CTrecon.m,

1. Fixes a bug in iradon that results in offsets from the true values in the recon-
structed image.

2. Uses a mex function from iradon_speedy for backprojection. According to a com-
ment by Jeff Orchard, the author of iradon_speedy, on the Mathworks File Ex-
change entry for iradon_speedy, Matlab R2011a now uses a mex function. I do
not have that version so I cannot confirm this.

3. Handles complex projections to return a complex reconstructed image - see zBack-
project.c

4. Regularizes the interface to (parameter−name′, parameter−value) syntax. This
implies that CTrecon cannot just be dropped in for iradon. The advantage is more
readable code.

Another difference is that CTrecon only implements the nearest-neighbor and linear
interpolation methods in the backprojection. I have never used the other methods in
iradon but if you need them you can extend the C code.

The offset bug is introduced during the calculation of the convolution function. The
iradon function uses the convolution-backprojection algorithm[1]. As the name implies,
this algorithm first convolves the projections and then back projects them onto the im-
age pixels. With continuous, i.e. non-digitized, functions the transfer function of the
convolution is just the absolute value of frequency |w|. The iradon code (see the listing
below) discretizes this by using the absolute value of the frequency samples. This is not
what we want to do and leads to inaccuracies in the value of the reconstructed image.
The problem with this occurs mainly at the zero frequency value. As discussed by Kak
and Slaney[1], with a finite bandwidth sampled system, this zeros out the contribution
not only at zero frequency but for the complete interval around zero.

To fix the problem, Kak and Slaney suggest computing the convolution function by
transforming a discrete version based on a finite bandwidth transfer function (see Eq.
61 in Ch. 3 of their book).
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where τ is the distance between projection lines. This is the method used in CTrecon
(see the second code box). Fig. 1 is a plot of the transfer function near the origin.
Notice that the value of the CTrecon transfer function is not equal to 0 at 0 frequency. It
is interesting that the Matlab documentation for iradon references the Kak and Slaney
book but they do not use their suggested implementation.

% iradon code
% F i r s t c rea te a ramp f i l t e r − go up to the next h ighest power o f 2 .
order = max(64 ,2^nextpow2(2∗ l en ) ) ;
f i l t = 2∗( 0 : ( order / 2 ) ) . / order ; % t h i s i s the f i l t e r spectrum

The problem is illustrated with the simple object shown in Fig. 2. The white region has
a value 1 and the dark is 0. Suppose we reconstruct using iradon and plot the results.
Fig. 3 shows the image data along a horizontal line through the center of the five
circles. Notice that the values are offset from 0 and 1. Fig. 4 shows the reconstruction
with CTrecon. The reconstructed values now go through 0 and 1. The ripples on the
data are caused by aliasing artifacts since we have a sampled data system.

% CTrecon code
% crea te f i l t e r by t ransfo rming the d i r e c t space formula
% (Eq . 61 o f Kak and Slaney )

% the f i l t e r order i s the next h ighest power o f 2 .
order = max(64 ,2^nextpow2(2∗ n l i n e s ) ) ;
f i l t _ l e n g t h = numel ( 0 : ( order / 2 ) ) ;
ns = 0 : ( f i l t _ l e n g t h −1);
h = zeros ( size ( ns ) ) ;
h ( 1 ) = 0 .2 5 ;
h ( ns ( 2 : 2 : end )+1 ) = (−1/ pi ^ 2 ) . / ns ( 2 : 2 : end ) . ^ 2 ;
h = [ h , h (end−1: −1:2) ] ; % make i n t o form f o r c i r c u l a r convolve
f i l t _ a l l = f f t ( h ) ;

You may say that the offsets are not very large but one of the principal advantages
of computed tomography (CT) is its numerical accuracy. The numerical values in the
lungs are used, for example, by radiologists to distinguish between normal lungs and
those with emphysema. The Hounsfield unit (HU) is

HU = 1000
µ − µwater

µwater

and a 1% difference i.e. 10 HU is considered significant.
As discussed in my previous post, the attenuation as a function of energy is deter-

mined by a low dimension vector, length 2 for ordinary body materials and length 3 if
there is an externally administered contrast agent present. In the body material case,
we can utilize the tight integration of complex numbers into Matlab to represent the at-
tenuation as a complex number. The reconstructed image is then a complex array with
the real part equal to the first component and the imaginary part the second. The Mat-
lab functions handle complex data seamlessly so all the filtering operations in CTrecon
using fft and ifft do not require any changes. I extended the Backproject.c function
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Figure 1: Plot of iradon and CTrecon transfer function.

for complex data in zBackproject.c, which is used by CTrecon if the projection data are
complex.

Finally, I find the calling convention of iradon with a variable number of unlabeled
parameters confusing so I adopted the ′parameter − name′, parameter − value calling
syntax, which is used by some Matlab functions. See the help for CTrecon for the
parameters and their labels.

And, as Steve Jobs says, “one more thing.” The projection data in Fig. 2 were NOT
computed using the radon function. This function uses a discrete image as its input and
leads to large artifacts in the reconstructed images due to ripple when the projection
lines align with the rows and columns of pixels in the image. My next post shows an
alternate method to compute projections that is more suitable for quantitative work.

You can download code for CTrecon.m and to compute the results in this post here.
To use the code, unzip the file into a directory. Compile the C files using mex. See
the Matlab help for the mex function for instructions. I find that changing the working
directory to the directory with the code using cd makes the compilation much simpler. I
have tested the code with the free Microsoft Visual Studio Express 2008 compiler.
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Figure 2: The object projections and the reconstructed image. The projections are in
the left panel while the object is on the right. The white values in the object
have a value of 1 and the dark a value of 0.
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Figure 3: A plot of the data on a line through the center of the iradon reconstructed
image. Note the offsets of the data from the true values of 0 and 1. The
ripples are caused by aliasing artifacts, which are present in any sampled
data system.
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Figure 4: Plot of the CTrecon reconstructed image data on the same line used with Fig.
3. Note the the data do not show an offset.
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