
x

y

P1

P2

d

r = P1 + s*d

s

r

Figure 1: A line segment is specified by its start and end points, P1, P2. From these, we
can compute the difference vector d = P1− P2 and a point on the line segment
is r = P1 + sd 0 ≤ s < 1.

aprendtech.com >> blog >> this post
If you have trouble viewing this, try the pdf of this post. You can download the code

used to produce the figures in this post.

Intersection of line segments using complex variables in
Matlab

NOTE: Sep. 2, 2011, this is a substantial edit of my previous post to explain more details.
A post by Loren Shure of Mathworks, reminded me of a function, PolylineIntersectSeg-

ment.m, that I wrote to compute the intersection of a polyline with a line segment. This
function nicely combines the topics of my last two posts, use of complex variables as vectors
and lines, so I will discuss it in more detail. The use of complex variables simplifies the
code and makes it easier to understand and modify.

A polyline[1] is a set of connected line segments. Line segments are naturally specified
by their start and end points instead of the n̄ and ŝ vectors described in my last post. An
example is shown in Fig. 1

In a polyline, as shown in Fig. 3, the end point of one segment is the start point of the
next. The four points (1 − 4) define a three segment polyline (shown in blue). A polyline
is in general not closed although it can be. In addition, the segments of the polyline can
cross.

The PolylineIntersectSegment.m function code is based on the intersection between
two segments L1 and L2 determined by their end points (see Fig. 2)

L1 : P11, P12

L2 : P21, P22

.

Letting the vectors dk = Pk2 − Pk1, k = 1, 2 be the vectors from the start to the end
points of the two segments, points on the segments are r1 = P11+sd1 and r2 = P21+td2

with 0 ≤ s < 1 and 0 ≤ t < 1. At the point of intersection, r1 and r2 are equal

r1 = P11 + sd1 = r2 = P21 + td2

Rearranging terms
sd1 − td2 = P21 − P11 = D. (1)

http://www.aprendtech.com
http://www.aprendtech.com/wordpress
http://aprendtech.com/wordpress/?p=140
http://www.aprendtech.com//blog/Post12/P12segments.pdf
http://www.aprendtech.com//blog/Post12/P12segments.zip
http://blogs.mathworks.com/loren/2011/08/29/intersecting-lines/
http://aprendtech.com/wordpress/?p=124
http://aprendtech.com/wordpress/?p=134
http://aprendtech.com/wordpress/?p=134

x

y

P1,1

P2,1

L1

L2

P1,2

P2,2
s

t

Figure 2: Intersection of two line segments.

Now let nk be vectors perpendicular to dk, k = 1, 2. If we use complex numbers
to represent the vectors, we can compute the perpendicular vectors by multiplying by
eiπ/2 = i so nk = idk. Taking the dot product of both sides of Eq. 1, we can solve for sint

and tint. Dotting first with n2 and solving

sint =
D · n2

d1 · n2

and then with n1

tint = −
D · n1

d2 · n1

.

We can then test that 0 ≤ s < 1 and 0 ≤ t < 1 for intersection points. I use open intervals
to avoid duplicate hits when segments intersect at end points. You can change this test
depending on how inclusive you want to make your definition of intersection to be. This
will depend on your application so I do not think there is a single correct answer. The test
in the code is shown below and it easy to change. If the segments are parallel or have
zero length, then there will be a division by zero. Matlab will return a NaN for sint or tint

and the logical test will return false indicating no intersection. You can also modify the
code to test for these and do something different.

% t e s t f o r i n t e r s e c t i o n i n Po ly l i ne In te rsectSegment
in tersectsOK = (s >=0)&(s <1)&(t >=0)&(t <1) ;

The actual point of intersection will be

Pintersect = P11 + sintd1

The code of PolylineIntersectSegment.m (see the zip file for this post) shows how the
use of complex variables simplifies things. As noted above, to find a perpendicular vector,
multiply the vector by i, which rotates it by 90 degrees. All the Matlab functions like diff

work with complex variables. The code is a straightforward implementation of the equa-
tions. Some examples are given with the zip file and are shown in the box. The polyline in
the third example is shown in Fig. 3.

http://www.aprendtech.com//blog/Post12/P12segments.zip
http://www.aprendtech.com//blog/Post12/P12segments.zip

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1 2

34

Figure 3: Example of intersection of a line segment and a polyline. The test segment is in
red, the polyline in blue with vertexes numbered, and the intersection points are
circles.

%% i n t e r s e c t o f 2 l i n e s
zseg = [0 1 i] ; % l i n e along the y ax is
p1 = [− .5 . 5] + 0.5∗1 i ; % l i n e segment p a r a l l e l to x−ax is a t y=0.5
z i = Po ly l i ne In te rsectSegment (zseg , p1) ;
disp (z i)

%% add another segment along same d i r e c t i o n as f i r s t one but o f zero leng th
% only chooses the i n t e r s e c t i o n wi th the c o r r e c t segment
p 1 n u l l = [p1 , p1 (end)] ;
z i = Po ly l i ne In te rsectSegment (zseg , p 1 n u l l) ;
disp (z i)

%% add another segment along same d i r e c t i o n as f i r s t one
% only chooses the i n t e r s e c t i o n wi th the c o r r e c t segment
p2 = [p1 , (1 .5+0 .5 i)] ;
z i = Po ly l i ne In te rsectSegment (zseg , p2) ;
disp (z i)

%% add segment p a r a l l e l to t e s t segment i n y−d i r e c t i o n
% ignores segments to t e s t segment
p3 = [p2 , (1 .5 +2 i)] ;
z i = Po ly l i ne In te rsectSegment (zseg , p3) ;
disp (z i)

%% d i sp l a y r e s u l t s
fh = f igure ;
plot (p3 , ’−xb ’)
hold on
plot (zseg , ’−rd ’)
plot (z i , ’ ok ’)
hold o f f
axis ([−2 2 −2 2])

The code uses the zdot function for the dot product of two vectors represented as com-
plex variables.

function d = zdot (z1 , z2) % dot product f o r complex vecto rs
d = rea l (z1 (:) .∗ conj (z2 (:))) ;

Last edited Sep. 1, 2011
c©2011 by Aprend Technology and Robert E. Alvarez
Linking is allowed but reposting or mirroring is expressly forbidden.

References

[1] P. Schneider and D. H. Eberly, Geometric Tools for Computer Graphics, San Fran-
cisco, CA: Morgan Kaufmann, 2002.

