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Figure 1: Block diagram of three dimension A-table estimator.
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Estimator for contrast agents 1

The next series of posts discuss my recently published paper[1], “Efficient, non-iterative
estimator for imaging contrast agents with spectral x-ray detectors,” available for free
download here. The paper extends the previous A-table estimator[2], see this post, to
three or more dimension basis sets so it can be used with high atomic number contrast
agents. It also compares the A-table estimator to an iterative estimator.

This post describes the software to implement the new estimator. The next posts de-
scribe the code for an iterative estimator, compare the performance of the new estimator
to the iterative estimator and the CRLB, compare the new estimator with a neural network
estimator, and finally discuss an alternate implementation using a neural network as the
interpolator.

The A-table estimator for higher dimension A-vectors

A block diagram of the estimator for three dimensions is shown in Fig. 1. I will discuss the
main differences between the two and three dimension estimators in the linear maximum
likelihood estimator (MLE), the calibrator and the error interpolator.

The linear maximum likelihood estimator

With matrix notation, the form of the linear MLE does not change although the dimensions
of the matrices are different.

http://www.aprendtech.com
http://www.aprendtech.com/wordpress
http://aprendtech.com/wordpress/?p=726
http://www.aprendtech.com/blog/P60Est3D_1/P60Est3D_1.pdf
http://www.aprendtech.com//blog/P60Est3D_1/P60Est3D_1.zip
http://aprendtech.com/AlvarezEstimatorForContrastAgentsIEEETMI2015.pdf
http://aprendtech.com/wordpress/?p=492
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The equation assumes a linear model with multivariate normal noise:

δL = MδA+w

where A is the vector of the line integrals of the basis set coefficients, L is the vector
of the negative logarithm of the measurements for each spectrum divided by the “air”
value, M = ∂L/∂A where the division means that corresponding elements of the vectors
are divided, and w is a zero mean multivariate normal random vector with covariance CL.

The linear estimator is the term in brackets of Eq. 1 and is a matrix so the estimates
are computed as a matrix multiplication. See the paper and my blog post for a discussion
of why we can use a single constant estimator despite the fact that CL depends strongly
on A.

We can compute the parameters required for the estimator from the calibrator data by
extending the method for the 2D estimator described in this post. The Matlab code to do
this, from AtableSolveEquations3.m, which is included with the code for this post, is

% solve f o r M mat r ix from c a l i b r a t i o n data
M = ( cdat . As \ cdat . l o g I ) ’ ; % note transpose

% compute MLE inverse s o l u t i o n mat r ix from M and the covar iance
RLi = inv ( cdat . RL ) ;
c s l i n = inv (M’ ∗ RLi∗M)∗M’ ∗ RLi ;
As_MLE_calibrator = cdat . l o g I ∗ ( c s l i n ’ ) ;

It

is a straightforward implementation of the expression in brackets in Eq. 1. In the code,
cdat is the calibration data structure with fields cdat.As i, the thicknesses of the steps of the
calibrator arranged on the rows, cdat.logI, the negative of the logarithm of the measure-
ments divided by the measurements with a zero thickness object, L in Eq. 1, and finally
RL, the covariance of the L on a calibrator step in the middle of the range of A-vectors
spanned by the calibrator.

The code computes M as the least squares fit of L as a function of the A with the
calibrator data. In Matlab the backslash operator does the least squares fit. Recall that
for for linear model, M = ∂L/∂A so by fitting the data we get an average value over the
calibrator data. The next step computes the inverse of the covariance matrix CL, which is
called RL in the code.The next line implements Eq. 1 to compute the linear MLE in the
brackets of the equation. The final line computes the linear maximum likelihood estimates
of the calibrator data.

The 3D calibrator

We can extend the 2D calibrator by adding step wedges of the a third basis material. With
a contrast agent, the third material might be a machinable plastic material with the high
atomic number atoms linked into it so they are uniformly dispersed. A side view of the
calibrator is shown in Fig. 2. In practice, the step wedges would have more steps. As
the number of steps increases, the total number of combinations increases as the cube
of the number of steps, so an automated method to make the measurements would be
desirable.
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Figure 2: Calibrator for a three dimension basis set.

The 3D error interpolator

The implementation of the estimator in my previous paper[2] used the Matlab gridfit.m
function[3], which is inherently two dimensional. In order to use the estimator with higher
dimension basis sets, we need to find a new interpolator bearing in mind that it needs to
operate with non-regularly spaced data. I chose to use the scatteredInterpolant object
although other algorithms are certainly possible. A possibility is to use a neural network,
which is discussed in a future post.

The error interpolator is constructed by the following code in AtableSolveEquations3.m

% compute the e r r o r vecto rs f o r the i n t e r p o l a t i o n
A s _ e r r o r s _ c a l i b r a to r = cdat . As − As_MLE_cal ibrator ;

% e r r o r s a t uneven spaced As_MLE_cal ibrator ,
% n c a l i b r a t o r _ s t e p s by nbasis mat r i x

% compute the Delaunay s i mp l i ce s
% using the f i r s t component o f A s _ e r r o r s _ c a l i b ra to r as Values
% since s c a t t e r e d I n t e r p o l a n t on ly i n t e r p o l a t e s sca l a r data
% then w i l l make copies o f o b j e c t to d u p l i ca te the s i mp l i ce s
% but use as Values the o ther 2 components o f A s _ e r r o r s _ c a l i b r a t o r
% saves some t ime wi th l a rg e number o f c a l i b r a t i o n p o i n t s

i n t e r p s = c e l l ( 3 , 1 ) ; % t h i s w i l l ho ld the s c a t t e r e d I n t e r p o l a n t o b j e c t s
% use d e f a u l t l i n e a r i n t e r p o l a t i o n and e x t r a p o l a t i o n methods

i n t e r p s { 1 } = . . .
s c a t t e r e d I n t e r p o l a n t ( As_MLE_cal ibrator , A s _ e r r o r s _ c a l i b r a to r ( : , 1 ) ) ;

for kbasis = 2 : nbasis
% make copy o f o b j e c t w i th i t s s i mp l i ce s

i n t e r p s { kbasis } = i n t e r p s { 1 } ;
% but s u b s t i t i t u t e data f o r o ther components o f A s _ e r r o r s _ c a l i b r a t o r

i n t e r p s { kbasis } . Values = A s _ e r r o r s _ c a l i b ra t o r ( : , kbasis ) ;
end

The first line computes the error correction vectors as the differences between the ac-
tual calibrator step wedge thicknesses and the linear maximum likelihood estimates. The
next lines compute the scatteredInterpolant objects for each dimension of the data. The
Matlab scatteredInterpolant object encapsulates the Delaunay simplices, the scalar inter-
polant data, and the code to compute the interpolated value of a given input data point as a
linear combination of the values of the interpolants at the vertices of the enclosing simplex
multiplied by the barycentric coordinates. The interpolant data are loaded into the V alues
member of the object automatically when it is constructed or other data can be substituted



after construction. See the comments in the code for a more detailed explanation of its
functioning.

Compute the estimates during image acquisition

The following code computes the estimates. The object data are in the tdat structure.
The parameters to do the computation such as the Delaunay simplices are stored in the
solvedat structure. This is computed once when the AtableSolveEquations3.m is first
called but after that, it can be passed as a parameter to the function thus speeding up the
computation.

% l i n e a r maximum l i k e l i h o o d est imates f o r ob jec t
As_MLE_object = t d a t . l o g I ∗ ( so lvedat . c s l i n ) ’ ;

% solve f o r c o r r e c t i o n vec tors f o r the As_MLE_object
As_er rors_ob jec t = zeros ( size ( As_MLE_object ) ) ; % pre−a l l o c a t e mat r ix

for kbas is = 1: nbasis
As_er rors_ob jec t ( : , kbas is ) = so lvedat . i n t e r p s { kbas is } ( As_MLE_object ) ;

end

% add As_er rors_ob jec t to AsMLE to get f i n a l es t imate
Astes t = As_MLE_object + As_er rors_ob jec t ;

The

first line computes the linear maximum likelihood estimates using Eq. 1 with the param-
eters stored in solvedat.cslin. The next lines compute the correction vectors for these
estimates and the last line computes the final estimates as the linear maximum likelihood
estimates plus the corrections.

Discussion

There are significant differences between the scatteredInterpolant and gridfit interpola-
tors. John D’errico, the creator of gridfit says that it is not an interpolator but an approx-
imator. It fits a two dimensional plate to the data with rigidity constraints so it acts as a
smoother. On the other hand, the interpolator in scatteredInterpolant passes through the
data points and does a linear interpolation between them. I found that as a result of this I
had to use more calibrator steps with the 3D estimator than with the 2D implementation to
achieve a negligible bias. There may be alternate interpolators such as a neural network
that require fewer steps.

As has unfortunately become increasingly common, Mathworks, Inc., the producer of
Matlab, hides the code for the scatteredInterpolant class. In the paper, open source
functions that should be able to reproduce the results of the paper and of the posts on the
new estimator are described.
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