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The constant covariance approximation to the CRLB with
pileup

In my last post, I showed that the probability distribution of photon counting detector data
with pileup is multivariate normal for the counts typically used in material selective imag-
ing. With the normal distribution and a linear model, the Cramèr-Rao lower bound (CRLB)
for the covariance of the A-vector data includes a term that depends on the change in
the measurement data covariance with A. Without pileup I show in this post and in the
Appendix of my “Dimensionality and noise ...” paper[1], available for free download here,
that the change in covariance term is negligible for large enough counts. In Appendix B
of my “SNR with pileup ...” paper[2], I show that the term is also negligible with pileup. In
this post, I will present and explain the code to reproduce the figures in that section.

Full CRLB for multivariate normal linear model

For a linear model δL = MδA with multivariate normal noise, Appendix 3.C of Kay[3]
shows that the Fisher information matrix F(A) has elements
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where L = − log (I/I0), I is the vector with elements the measurements with different spec-
tra, I0 is the measurements vector with no object in the system, and CL is the covariance
of the logarithm of the measurements. The notation tr [] means the trace of a matrix. The
CRLB of the A-vector covariance CAis the inverse of F(A)

CA = [F(A)]−1. (2)

No pileup formulas

Using the linear decomposition of the attenuation coefficient

µ(E) = a1f1(E) + a2f2(E)

the components of I with no pileup are

Ik(A) =

∫

sk (E) e−A1f1(E)−Af2(E)dE, (3)

where sk (E) is the k-th measurement spectrum. The k component of L is therefore

Lk = − log

(

∫
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)

.

Differentiating the linear model, the elements of M are

Mij =
∂Li

∂Aj

=

∫

si (E) e−A1f1(E)−Af2(E)fj(E)dE
∫

si (E) e−A1f1(E)−Af2(E)dE
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Noticing that

ŝi(E) =
si(E)e−A1f1(E)−Af2(E)

∫

si (E) e−A1f1(E)−Af2(E)dE

is the normalized transmitted spectrum for measurement i, Mij is the effective value of
the basis set function j in measurement spectrum i, Mij = 〈fj〉ŝi . The complete matrix is
then

M =
∂L(A)

∂A
= 〈f〉 (4)

For PHA and no pileup, the bin counts are independent and Poisson distributed so the
covariance of the log measurement vector L is

CL =
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Using this covariance, the derivatives in the second term of the Fisher matrix Eq. 1 are
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Pileup formulas

With pileup, photons with different energies contribute to each measurement so Eq. 3 is
no longer accurate. The gradient matrix is still defined as M = ∂L

∂A
so to compute it, we

approximate the derivative from the first difference

M ≈
∆L

∆A
(6)

As stated in the paper

To compute ∆L, we first compute the spectra through the object with at-
tenuation A and then with A+∆A. The transmitted spectra are not affected
by pileup since they occur before the measurement. These transmitted spec-
tra are then used to compute the expected values of the measurements with
pileup using the formulas in Section 2 of the paper.

This was implemented in the function CRboundNoLinearizeWithP ileup.m. The relevant
section of code is shown in the text box below from the subfunction MLOC:



1 fo r kdim = 1: specdat . nbasis
2 sp2 = specdat ;
3 sp2 . specnum = exp (−specdat . mus∗dAs ( kdim , : ) ’ ) . ∗ specdat . specnum ; % note transpose
4 N2 = sum ( sp2 . specnum )∗dE ;
5 ra te2 = N2 / T i n teg ra te ;
6 eta2 = ra te2 ∗deadtime ;
7 Nrec_bar2 = N2/ ( 1 + eta2 ) ;
8 sp_w_pi leup2 = SpectrumWithPi leup ( sp2 , eta2 ) ;
9 f racs2 = BinFracsFromIndexes ( sp_w_pileup2 , specdat . i dx_ th resho l d ) ;

10 nrec_bins2 = Nrec_bar2∗ f racs2 ; % nbars f o r each b in
11 M_NK( : , kdim ) = −( log ( nrec_bins2 ) − log ( nrec_bins ) ) / dAs ( kdim , kdim ) ;
12 end

The code first computes the PHA bin counts at the operating point in the first part of
MLOC (not shown). Then in the loop shown in the text box, it steps off as specified in
the dAs matrix in each dimension, computes the new spectrum due to the additional dAs,
computes the resulting spectrum with pileup, uses this to compute the new recorded bin
counts, and then subtracts the logs of the new counts from the logs of the operating point
counts and divides by the dAs component to give the first difference approximation to the
derivative.

We can also approximate the derivatives in the second term of the Fisher matrix with
pileup as the first difference.
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∆Ai

(7)

The first difference of the covariance is computed in the dRdALOC subfunction. This
function is shown in the text box below:
1 function dRdA = dRdALOC( specdat , T in tegra te , deadtime , dAs )
2 nbins = numel ( specdat . i dx_ th resho l d ) + 1 ;
3 dRdA = zeros ( nbins , nbins , specdat . nbasis ) ; % nbasis planes , one f o r each A−vecto r component
4 cv0 = covLOC( specdat , T in tegra te , deadtime ) ; % covar iance at opera t ing po i n t
5 fo r kdim = 1: specdat . nbasis
6 sp2 = specdat ;
7 sp2 . specnum = exp (−specdat . mus∗dAs ( kdim , : ) ’ ) . ∗ specdat . specnum ; % transmi t ted spectrum −− note transpose
8 cv = covLOC( sp2 , T in tegra te , deadtime ) ;
9 dRdA ( : , : , kdim ) = ( cv − cv0 ) / dAs ( kdim , kdim ) ;

10 end

The approach is the same as with the computation of M. The covariance at the operating
point cv0 is computed first using the covLOC subfunction. The spectrum incident on the
detector after stepping off in each dimension is used to compute the new covariance with
pileup with covLOC. The first difference divided by the step size for that dimension is the
approximation to the covariance derivative, dRdA. Notice that dRdA is a three dimensional
array.

The rest of CRboundNoLinearizeWithP ileup.m is a straightforward implementation of
Eqs. 1 and 2. The inverse of the first term, F1, is the constant covariance approximation
and the inverse of F1 + F2 is the full CRLB.

Test pileup formulas

I tested the first difference approximation to the pileup formulas by comparing them with
the actual derivatives for the zero dead time case. In this case, both formulas should
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Figure 1: Compare A1 variance computed with no-pileup and pileup formulas. The plot
shows the variance on a line through A-space as a function of the distance from
the origin. The left plot compares the full variance while the right plot is for the
constant covariance approximation. The pileup formulas with zero dead time
using the first difference approximations of Eqs. 6 and 7 are compared with the
actual derivatives in Eqs. 4 and 5.

give the same result. I did this for a set of A-vector values on a line through the origin in
A-space. The results are shown in Fig. 1. The two functions’ outputs are plotted versus
distance from the origin in A-space. The left plot is for the full CRLB formula including
the second term of the Fisher matrix while the right is only the first term. Notice that the
first difference function is very close to the actual derivative function for both the constant
covariance and full CRLB. Also notice that the left and right plots are indistinguishable.
This is because, as will be shown in the next section, the constant covariance CRLB is
nearly equal to the complete CRLB.

Constant covariance CRLB error with pileup

We can define the fractional error as

frac.err. =
‖CA,CRLB −CA,CRLB,const cov‖

‖CA,CRLB‖
(8)

where the symbol ‖ ‖ denotes a matrix norm. Fig. 2 shows the error as a function of
the number of photons for five values of the pileup parameter, η photons per dead time.
The top plot is for three bin PHA and the bottom is for the NQ detector. Notice that for a
given number of photons, the error with PHA increases but the error with the NQ detector
decreases as η increases.

Conclusion

Both with and without pileup, the constant covariance approximation to the CRLB is accu-
rate for photon counts less than those used in material selective applications.
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Figure 2: Constant covariance CRLB error with pileup. The top plot is for three bin PHA
and the bottom is for the NQ detector.
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