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Dimensionality and noise in energy selective x-ray
imaging-Part 1

In the next few posts I will discuss my paper, Dimensionality and noise in energy se-
lective x-ray imaging , available for free download here. I will elaborate on the physical
and mathematical background and explain how to reproduce the figures.

With my approach to energy selective imaging[1], the x-ray attenuation coefficient is
approximated as a linear combination of functions of energy multiplied by constants that
are independent of energy. The number of functions required is the dimensionality. The
basic premise of the paper is that the dimensionality is really a pragmatic tradeoff between
more information, which requires larger dimensionality, and the increase in noise, which
requires higher dose and more expensive equipment to reduce it to a level where the
resultant images are clinically useful. The bottom line of the paper is that with biological
materials such as soft tissue, bone, and fat, only two dimensions are practical but if an
externally administered contrast agent with a high atomic number element such as iodine
is included then three and maybe more dimensions are possible.

Dimensionality–intrinsic and noise based

Two approaches have evolved to define dimensionality–intrinsic and noise based. The
intrinsic dimensionality is the number of functions required to approximate attenuation
coefficients to an accuracy better than the errors in standard physics tables. I applied
the singular value decomposition (SVD) to study the intrinsic dimensionality in the early
1980’s. My work at that time is summarized in a book chapter[2], which based on two
Stanford technical reports that I wrote in 1981 and 1982, available here and here. Intrinsic
dimensionality and the SVD is also discussed in several of my posts, here and here. These
posts are included in my free ebook that you can get by emailing me.

My PhD dissertation and initial paper[1], used a definition of dimensionality that was
actually close to the noise-based approach discussed in this post. I found that by using
a two function basis set I was able to approximate the best attenuation coefficient data I
could find[3] very accurately–more accurately than the noise in the CT scanners of that
day. With this approach, the noise-based approach, the dimensionality depends not only
on the properties of the attenuation coefficients but also, and perhaps more importantly,
on the noise in the x-ray system measurements. These are limited by x-ray quantum
noise and ultimately on the amount of dose that we are willing to use. This depends on
the medical usefulness of the dimensionality information, so we need a method to study
the trade-off between dose and dimensionality. That is the purpose of the paper.

The two approaches to defining dimensionality are, of course, closely related. Although
the mathematics discussed in the paper does not explicitly refer to the intrinsic dimension-
ality, the basis functions are drawn from the space of attenuation coefficients and their
properties affect the results. As I will show in this post, the increase in noise depends
on the projection of the additional basis function on the other basis functions. Unless
the additional function has a significant component orthogonal to the previous functions,
the noise with the larger number of functions will be much larger than the noise with the
smaller basis set. The ability to choose additional functions orthogonal to the previous
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functions depends on the intrinsic dimensionality of the attenuation coefficient space. If
it is low, then you cannot find additional orthogonal functions and the noise will keep you
from extracting the information.

Increase in CRLB covariance with dimension

The increase in noise covariance with the number of parameters estimated is well known
and is covered in textbooks such as Parameter Estimation for Scientists and Engineers[ 4]
by Adriaan van den Bos. Van den Bos bases his discussion on the Fisher information ma-
trix, F, which is the inverse of the Cramèr-Rao lower bound (CRLB). I have discussed the
CRLB in several posts, see the ebook.

I discussed the Fisher matrix in this post. This matrix, which I will denote by F, has
components which are the negative of the expected value of the second derivative of the
log of the likelihood L = log [Pr (N;A)]

Fij = −

〈

∂2L

∂Ai∂Aj

〉

.

Notice that if we add an additional A-vector component, the F matrix terms that corre-
spond to the lower dimension components do not change. With this observation, we can
apply Corollary B.4 of van den Bos[4] to compute the magnitude of the additional variance
when we increase the dimension. Suppose FK−1 is the Information matrix with a K-1
function basis set and RK−1 = F−1

K−1
is the corresponding CRLB covariance. If we add

an additional basis function, then the K dimension information matrix can be partitioned
as

FK =
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where q is a column vector and FKK is a scalar. According to the corollary, the inverse of
FK is
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where the scalar
u = FKK − qTRK−1q. (3)

Eqs. 1 and 2 are true for any information matrix. We can gain further insight by using
the constant covariance approximation to the CRLB for energy selective data. This ap-
proximation assumes that the information matrix F does not depend on the A-vector. As
discussed in the Appendix of the paper and in a previous post, the approximation is valid
for the large expected counts normally used in medical imaging. With the approximation,
the information matrix is

F = MTC−1

L
M (4)

where, as usual, M = ∂L/∂A is the effective basis functions for the measurement x-ray
spectra and CL is the covariance of the log of the measurements. See the paper or my
previous post for a more detailed discussion.
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Using Eq. 4 for the three function case, we can partition M as

M =







| |
µ1 | µ2 | µ3

| |






.

With the partitioned matrix notation
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(5)

Comparing this to Eq. 1 for the additional covariance in going from two to three basis
functions, the q vector is

q =

[

µT
1C

−1

L
µ3

µT
2C

−1

L
µ3

]

. (6)

That is, q is the projection of the additional basis vector µ3 onto the first two basis vectors
using a weighted inner product with the measurement spectra as the weighting function.
From Eq. 2, if q is small, that is µ3 is nearly orthogonal to the [µ1 µ2], then the additional
covariance will be small. Conversely if the projection is large, then the additional basis
function does not add much information and the additional covariance will be large.

The additional covariance multiplier, u

Since I wrote the paper, I studied the scalar, u, in Eq. 3. The additional covariance in
Eq. 2 is multiplied by 1/u so it has a strong effect on it. Using the symbolic math program
Maxima to do the matrix calculations, I was able to show that u is

u =
|FK|

|FK−1|
, (7)

where the notation | | denotes a determinant. The maxima code to demonstrate this result
is included with the the code for this post.

Eq. 7 has an interesting interpretation. As the name implies, the Fisher matrix F be-
haves like information and its determinant in some respects measures the amount of
information. Another way to look at this is that the CRLB, which is the best estimate co-
variance, is the inverse of F. Therefore, the larger the determinant of F the smaller the
determinant of the covariance and a smaller determinant implies smaller variance. This
fact is used in the design of data collected for experiments. Designs that maximize |F| are
called D-optimal and are widely used. Matlab provides functions such as candgen in their
Statistics toolbox to help to produce D-optimal designs. From any of these points of view,
the expression for u in Eq. 7 implies that the larger the information with the additional
parameter compared with the information with the previous parameters, the smaller 1/u
and the additional covariance.

Numerical results

I tested Eqs. 2 and 7 numerically using Matlab. The relevant code is in the box below. The
code computes the difference between the formulas for the additional covariance and the
u constant is round-off error and their actual values. The complete code is available here.
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1 %% t e s t a d d i t i o n a l covar iance formulas
2 nbasis = 3;
3 nbins = 6;
4 specdat . i dx_ th resho l d = OptimNbinsThresholds ( specdat , nbins ) ;
5 specdat . mus = zeros ( numel ( specdat . egys ) , nbasis ) ; % use zeros since
6 % using 0 th ickness i n PoissonLambda
7 CLinv = diag ( PoissonLambda ( zeros (1 , nbasis ) , specdat ) ) ; % inverse of covar iance of log
8 a d d i t i o n a l _ m a t e r i a l s = { ’ adipose ’ , ’ i od i ne ’ } ;
9 ncases = length ( a d d i t i o n a l _ m a t e r i a l s ) ;

10 v = zeros ( ncases , 4 ) ; % summary data
11 mus_add = [ mus_body_materials ( : , 3 ) musI ] ; % adipose , i od i ne a t ten . coe f f .
12 fo r kcase = 1: ncases
13 specdat . mus = [ mus_body_materials ( : , 1 : 2 ) mus_add ( : , kcase ) ] ;
14 M = mubarNbinNdim( specdat , zeros (1 , nbasis ) ) ;
15 F = M’∗ CLinv∗M;
16 R = inv (F ) ;
17 M2 = M( : , 1 : ( nbasis −1)) ;
18 F2 = M2’∗ CLinv∗M2;
19 R2 = inv ( F2 ) ;
20 q = F ( 1 : ( nbasis −1) , nbasis ) ;
21 u = F( nbasis , nbasis ) − q ’∗R2∗q ;
22 u_calc = det (F ) / det ( F2 ) ;
23 u_er ro r = u − u_calc ;
24 z = R2∗q ;
25 R_add = ( z∗z ’ ) / u ;
26 R_error = norm (R( 1 : ( nbasis −1) ,1 : ( nbasis −1)) − (R2 + R_add ) ) / . . .
27 norm (R( 1 : ( nbasis −1) ,1 : ( nbasis −1 ) ) ) ;
28 v ( kcase , : ) = [ u , u_calc , u_error , R_error ] ;
29 f p r i n t f ( ’ kcase %d nbasis %d nbins %d u−e r r o r %g addt l−cov e r r o r %g \ n ’ , . . .
30 kcase , nbasis , nbins , u_error , R_error ) ;
31 end

The numerical results are in Table 1. Notice that the errors, in the last two columns on
the right, are essentially round-off errors.

Table 1: Numerical validation of additional covariance formula
u u calc u error frac-R error

adipose 1.30e-07 1.30e-07 5.79e-17 4.44e-10
iodine 3.57e-03 3.57e-03 2.07e-16 5.31e-14

Conclusions

I have presented the mathematics behind the increase in covariance with dimensionality
and new results for the multiplication constant u in the formulas. The results show that the
more information the additional parameter provides, the smaller the additional covariance.
The next post will show simulations that will quantify the additional covariance for two
cases that are of medical interest: imaging fat in addition to soft-tissue and bone, and
selectively imaging an externally administered contrast agent.

–Bob Alvarez
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