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Rationale for the new estimator

The past two posts have discussed estimators for A-vector data. I showed that with the
same number of measurement spectra as the A-vector dimension, any estimator that
solves the deterministic equations is the maximum likelihood estimator (MLE) and it will
achieve the Cramèr-Rao lower bound (CRLB). If there are more measurement spectra
than the dimension, then the polynomial estimator, which works well for the equal case,
has very poor performance giving a variance that can be several hundred times larger
than the CRLB. I showed by simulations that with more measurements than dimension
the iterative MLE does give a variance close to the CRLB but it has substantial problems.
Common to all iterative algorithms, the computation time is long and random. It may fail to
converge at all if the initial estimate is too far from the actual value. As it was implemented
by Schlomka et al.[1], it also requires measurements of the x-ray source spectrum and
the detector spectral response. These are difficult, time consuming and require laboratory
equipment that is not usually available in medical institutions.

In this post, I will give an intuitive explanation for the operation of a new estimator
that I introduced in my paper[2] “Estimator for photon counting energy selective x-ray
imaging with multi-bin pulse height analysis,” which is available for free download here.
The estimator is efficient and can be implemented with data that can be measured at
medical institutions. The details of the estimator are described in the paper. Here, I will
discuss the background and give a rationale on how it works.

The linear MLE with constant covariance

The estimator uses a two step algorithm. First it computes the linear MLE of the measured
data. Then it applies a correction to the linear estimate since the transformation L(A) is
not quite linear. The first question you might ask is why should this give a noise variance
close to the CRLB? The answer to this question depends on the properties of the linear
MLE, which I will discuss in this section.

I discussed the linear MLE in a previous post. It makes two important assumptions: (1)
the measurements L and the A-vector are linearly related and (2) the covariance is con-
stant. I will examine the linear assumption first. With this assumption, the measurements
are given by

Lwith_noise = MA+w. (1)

In this equation, Lwith_noise is the negative of the log of the measurements divided by
the measurements with no object in the system. The M matrix is the effective attenuation
coefficients, A is the vector of the line integrals of the basis set coefficients, and w is zero
mean multivariate normal noise.

The plot of L versus A in Fig. 1 shows that the linear approximation is actually quite
good so the errors will probably be small. Furthermore, the errors correspond to a small
offset or bias of the mean value but, as shown next, the random variations for each point
are close to the values that would be produced by a MLE using an accurate model.

The noise performance depends on the second assumption of the linear MLE that the
covariance is constant. This seems to be more problematic. After all, the covariance of
the log measurements, CL, is proportional to 1/Nphotons and the number of photons varies
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Figure 1: L vs. A for an 80 kilovolt x-ray tube spectrum and an aluminum/plastic basis
set. Notice that the transformation is nearly linear. This is a plot of one of the
components of L. The other components give similar results. This plot is from
my previous post “Applying statistical signal processing to x-ray imaging.” You
can download the code package for that post to reproduce the graph.

as a (negative) exponential of the thickness so it is definitely not a constant. However, if
we study the formula for the linear MLE from my previous post,
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we notice an interesting property. The estimator, which is the matrix in brackets in Eq. 2,
does not change if we multiply the covariance by a constant. Since (kCL)
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L
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where k is a scalar constant, the first factor in the bracket in Eq. 2,
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proportional to k and the second factor, MT
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L
, is proportional to 1/k so the two factors

cancel out and the matrix is unchanged if CL is replaced by kCL.
Because low x-ray energy measurements are attenuated more than high energy mea-

surements, the effect of thickness increase is not simply to multiply by a constant. Instead,
relative sizes of the elements of CL change as the thickness varies . However the change
is relatively small and does not cause the variance to become substantially larger than
the CRLB. The reason for this is related to the linear constant covariance CRLB being a
good approximation to the full CRLB that I noted in a previous post. Fig. 1 of that post (re-
produced as Fig. 2 of this post), shows that the constant covariance CRLB is essentially
equal to the full CRLB for small object thicknesses where the photon counts are above a
few hundred.

Similarly, as shown in Fig. 3, which is Fig. 12 of my paper, the main deviation of
the variance of the linear MLE from the CRLB occurs for thick objects. However, as
shown in the figure, the deviation is quite small and much smaller than the deviation of the
polynomial estimator variance.

Conclusion

The arguments presented here show why starting with the linear MLE is a good idea.
Unlike the polynomial estimator, the linear MLE properly weights the measurements so
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Figure 2: Fractional error of constant covariance CRLB compared with the full CRLB. The

left panel shows the path through A-space and the right panel shows the error
as a function of the distance from the origin along that line. This distance is pro-
portional to the thickness of an object with an a-vector with ratio of components
equal to the slope of the line in the left panel. The graph is from this post and
you can download the code package from that post to reproduce the figure.
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Figure 3: Variance of new estimator errors for large object thickness. The error bars are
the standard deviation of the estimates of the variance with the Monte Carlo
simulation of the estimator. Note that the variance becomes slightly larger than
the CRLB, which is the solid red line, as the thickness increases. As discussed in
this post, this is similar to the errors in the constant covariance approximation to
the the CRLB increasing as the thickness increases and the number of photons
decreases.
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the lower noise data have the strongest influence on the estimate. The MLE uses the
probability distribution function of the measurements to handle the cases where the noisy
data are not on the calibration surface. As shown in my paper[2], the errors in the linear
MLE can be corrected after the fact to give the optimal noise variance of the MLE with
negligible bias. In my next post, I will describe how we can implement the new estimator
using data measured by the x-ray system itself without requiring additional specialized
physics instruments or putting the medical scanner off line for substantial times.
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