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Image SNR with energy-selective detectors

This is the last post in my series discussing my paper, “Near optimal energy selective
x-ray imaging system performance with simple detectors”[1]. In the last post I showed
plots of the signal to noise ratio (SNR) of images with different types of energy-selective
detectors. In this post, I show images illustrating these differences. These images were
not included in the paper but they are based on its approach. The images are calculated
from a random sample of the energy spectrum at each point in a projection image. These
data are then used to make images with (a) the total energy, which are comparable to the
detectors now used in commercial systems, (b) the total number of photons, (c) an N2Q
detector, and (d) an optimal full spectrum by weighting the spectrum data before summing,
as described in Tapiovaara and Wagner (TW)[2]. I use the theory developed in my paper,
to make images from A-space data using data from the N2Q detector. In order to do this,
I need an estimator that achieves the Cramèr-Rao lower bound (CRLB). For this I use the
A-table estimator I introduced in my paper “Estimator for photon counting energy selective
x-ray imaging with multibin pulse height analysis”[3] available for download here.

The Monte Carlo experiment

The experimental set up is shown in Fig. 1 and the details are described in the caption.
Poisson distributed random data are computed with expected value equal to the transmit-
ted spectrum at each pixel. The random data are stored in a matrix with number of rows
equal to the number of pixels in the image and number of columns equal to the number
of energies in the spectrum. The matrix is used to compute the data for the images. For
example, the photon count image is the sum of each of the rows. This gives a column
vector, that can be “re-shaped” to form the image. Similarly, the N2Q data can be gener-
ated by summing along the rows from the lowest energy to the threshold energy, which is
the red, dashed, vertical line shown in the exit spectrum in the bottom panel, and from the
threshold energy plus one to the highest energy. This gives the N2 data at each row. The
Q data is the sum of the photon counts each multiplied by the energy for that point in the
spectrum.

The simulated object was generated with my sim2d.m function, which is included with
the code package. The relevant code from P36SNRimages.m is in Listing 1
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Listing 1: Compute simulated object
1 %% i n i t the simulated o b j e c t
2 th icknesses = [1 −.1 . 1 ] ; % gm/cm^2 −− w i l l assume d e n s i t y i s equal to 1
3 nx = 256; ny = 256;
4 zs i z = nx + 1 i ∗ny ; % dimensions o f images
5 z1 = 1 + 1 i ;
6 % boxes coords i n u n i t based coords
7 zcorners = nx ∗ [
8 .1∗ z1 , .9∗ z1 ; % background ma te r i a l reg ion
9 .2∗ z1 , . 2 ∗ z1 + .2+ .6 i ;

10 .2∗ z1 , . 2 ∗ z1 + .2+ .6 i ; % hole f o r f e a tu re
11 ] ;
12 % make o b j e c t out o f 3 planes : background ,
13 % −f e a tu re from background slab ,
14 % f i l l i n f e a tu re ma te r i a l i n background slab
15 tp lanes = zeros ( ny , nx , 2 ) ; % one plane per background and fe a tu re
16 % combine background plane wi th ho le f o r f e a tu re
17 fo r k t = 1:2
18 t img = sim2d ( zsiz , ’ r e c t ’ , [ zcorners ( kt , : ) , th i cknesses ( k t ) ] ) ;
19 tp lanes ( : , : , 1 ) = tp lanes ( : , : , 1 ) + t img ;
20 end
21 % add i n fe a tu re
22 tp lanes ( : , : , 2 ) = sim2d ( zsiz , ’ r e c t ’ , [ zcorners ( 3 , : ) , th i cknesses ( 3 ) ] ) ;
23 % refo rmat i n t o columns ( ny∗nx , 2 )
24 ts_ o b j e c t = reshape ( tp lanes , ny∗nx , 2 ) ;

The object, shown in the middle part of Fig. 1 on the right, is generated as three planes
that are summed pixel by pixel to form it. The three planes are the overall background ma-
terial slab, a hole in the background for the feature and the feature alone. The code from
lines 1-11 of Listing 1 defines the sim2D.m specifications for the image in each plane. See
the “help” for sim2D.m for more details on the specification. The tplanes 3D array holds
the background and feature thicknesses in each plane respectively. This is computed in
lines 12-22. The last line, 24, reshapes tplanes so each row is the thickness of the feature
and background material.

The random transmitted spectrum is generated using the code shown in Listing 2 below.

Listing 2: Generate random transmitted data
1 %% make the i n c i d e n t spectrum and t ra n smi t t e d spectrum
2 kV = 120;
3 [dum,dum, specdat ] = XrayTubeSpectrumTasmip ( kV , ’ number_spectrum ’ , ’ c l i p z e r o s ’ ) ;
4 specdat .mus = [ xraymu ( ztback , specdat . egys ) xraymu ( z t f e a t , specdat . egys ) ] ;
5
6 %% make the random t ra n smi t t e d data
7 t ransmiss ion = exp (− t s_ o b j e c t ∗specdat . mus ’ ) ;
8 % the expected va lues o f the t ra n smi t t e d spectrum
9 lambdas = bsxfun ( @times , t ransmission , specdat . specnum_norm ’ ) ; % s i z = ( ny∗nx , nenergy )

10 N = 10^3; % t o t a l number o f photons i n t ra sn mi t t e d spectrum
11 o f f se t2 co u n ts = 1 / numel ( specdat . egys ) ; % add smal l number so no zeros
12 % generate the random data
13 ns = poissrnd (N∗ lambdas ) + o f f se t2 co u n ts ;

The spectrum and the attenuation coefficients of the background and feature material are
computed in lines 1-4. The expected values of the transmitted spectrum are generated in
lines 6-10. The random data are computed in line 13. The ns matrix has one row per pixel
in the image and the columns are the values for each spectrum energy. Note that a small
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Figure 1: Block diagram of the experiment. An x-ray tube generates the entrance spec-
trum. The collimated beam goes through every pixel of the object with “good
geometry” so scatter is negligible. The object consists of the background, a slab
of tissue material, and the feature, a box of bone-material. The feature is em-
bedded in the background so there is a hole in the tissue slab to fit the bone box.
The background is 1 gm/cm2 and the feature is 0.1 gm/cm2. The transmitted
spectrum is measured at each point in the image.



constant is added to the data so there are no zero values. This would lead to problems in
the computation of the log data for the N2Q image.

Making the N, Q, and optimal, full-spectrum images

The N, Q, and optimal, full-spectrum TW images were computed directly from the random
transmitted data generated with the code in Listing 2. The code to generate the images is
in Listing 3. The bsxfun function is a fast way to compute element-by-element products
of a matrix and a vector (see the Matlab help).

Listing 3: Compute N, Q, and TW images
1 %% N image
2 Ns = sum ( ns , 2 ) ;
3 imdatN = reshape (Ns , ny , nx ) ;
4 snrN = SNRfeature ( imdatN ) ;
5
6 %% Q image
7 Qs = sum ( bsxfun ( @times , ns , specdat . egys ’ ) , 2 ) ;
8 imdatQ = reshape (Qs, ny , nx ) ;
9 snrQ = SNRfeature ( imdatQ ) ;

10
11 %% Make the TW opt ima l image by we igh t ing the f u l l spectrum data a t each p o i n t i n image
12 % f o r a t h i n ob jec t , the op t ima l we igh t ing f u n c t i o n i s p r o p o r t i o n a l to
13 % d i f f o f the mus a t each energy
14 dmus = d i f f ( specdat . mus, 1 , 2 ) ;
15 dmus_norm = dmus /sum (dmus ) ;
16 imTW = reshape (sum ( bsxfun ( @times , ns , dmus_norm ’ ) , 2 ) , ny , nx ) ;
17 snrTW = SNRfeature ( imTW ) ;

Making the N2Q data

Computing the N2Q image is more complex but the result has advantages over the other
images including the full-spectrum TW. It is a two step process: first, compute the A-vector
data, then compute a low-noise image from the A-vectors. I will discuss the first step in
this section and leave the computation of the image for the next section. The steps to
compute the A-vector data are (each step refers to the lines of code in Listing 4):

1. Compute the N2Q data from the ns matrix and the threshold index (1-5)

2. Make the “air data” i.e. the expected value of the data with no object in the beam
(6-9).

3. Compute − log (N2Q/N2Q0) (10-12)

4. Compute noise-free calibration data for a two element step wedge made of the back-
ground and feature material. Use of these materials is unrealistic but the results
would be the same for more realistic materials such as aluminum and plastic and
would make the code needlessly complex. (14-28)

5. Compute the covariance of the log data. This is required for the A-table algorithm.
This can be done experimentally from the log N2Q image using the same approach.
(30-31)



6. Solve for the A-vector image using my AtableSolveEquations.m function. This is
included with the code package. (33-38)

Listing 4: Compute the N2Q image
1 %% N2Q data −− w i l l process using my A−t a b l e method
2 % f i r s t compute o b j e c t data
3 Ethreshold = 35; % keV
4 [dum, i d x th re sh o l d ] = min ( abs ( specdat . egys − Ethreshold ) ) ;
5 N2Qs = [sum ( ns ( : , 1 : i d x th re sh o l d ) , 2 ) sum ( ns ( : , ( i d x th re sh o l d +1 ) :end ) , 2 ) Qs ] ;
6 % ’ a i r data ’ i . e . no o b j e c t i n beam . Assume has no noise
7 N2Qs0 = N∗ [sum ( specdat . specnum_norm( 1 : i d x th re sh o l d ) ) . . .
8 sum ( specdat . specnum_norm( ( i d x th re sh o l d +1 ) :end ) ) . . .
9 sum ( specdat . specnum_norm.∗ specdat . egys ) ] ;

10 % add o f f s e t to a i r data so i t matches the o f f s e t added to noisy data
11 N2Qs0( 1 : 2 ) = N2Qs0( 1 : 2 ) + o f f se t2 co u n ts ;
12 logN2Qs = bsxfun (@minus , log (N2Qs0) , log (N2Qs ) ) ; % these are p o s i t i v e numbers
13
14 %% c a l i b r a t i o n data −− assume noise f re e
15 n ca l i b _ p o i n t s = 20;
16 t 1 s _ c a l i b = l inspace (− .5 ,4∗ th i cknesses ( 1 ) , n ca l i b _ p o i n t s ) ;

% al low negat ives so fewer out o f range p o i n t s
17 t 2 s _ c a l i b = l inspace (− .3 ,4∗ th i cknesses ( 3 ) , n ca l i b _ p o i n t s ) ;
18 idxs = combinator ( n ca l i b _ p o i n t s ,2 , ’ p ’ , ’ r ’ ) ; % permutat ions taken 2 a t a t ime wi th r e p i t i t i o n
19 t s _ c a l i b = [ t 1 s _ c a l i b ( idxs ( : , 1 ) ) ’ t 2 s _ c a l i b ( idxs ( : , 2 ) ) ’ ] ;
20 t ra n smi ss i o n _ ca l i b = exp (− t s _ c a l i b ∗specdat .mus ’ ) ;
21 lambdas_cal ib = bsxfun ( @times , t r a n smi ss i o n_ ca l ib , specdat . specnum_norm ’ ) ; % s i z = ( n c a l i b steps , ne
22 ns_ca l ib = N∗ lambdas_cal ib + o f f se t2 co u n ts ; % no noise f o r c a l i b r a t i o n data
23 Qs_cal ib = sum ( bsxfun ( @times , ns_cal ib , specdat . egys ’ ) , 2 ) ;
24 N2Qs_calib = [sum ( ns_ca l ib ( : , 1 : i d x th re sh o l d ) , 2 ) sum ( ns_ca l ib ( : , ( i d x th re sh o l d +1 ) :end ) , 2 ) Qs_cal ib ]
25 % a i r data does not change so use r e s u l t s from previous c e l l
26 logN2Qs_cal ib = bsxfun (@minus , log (N2Qs0) , log ( N2Qs_calib ) ) ; % these are p o s i t i v e numbers
27 cdat . As = t s _ c a l i b ;
28 cdat . l o g I = logN2Qs_cal ib ;
29
30 %% compute covar iance o f log (N2Q) data from background reg ion o f image
31 covsta ts .RL = cov ( logN2Qs ( idxs4back , : ) ) ;
32
33 %% solve f o r A vecto r image data
34 t d a t . As = t s_ o b j e c t ;
35 t d a t . l o g I = logN2Qs ;
36 % N2Qdat = PolyASolveEquat ions ( cdat , t d a t ) ;
37 N2Qdat = Atab leSolveEquat ions ( cdat , tda t , ’ s t a t s ’ , covsta ts ) ;
38 zAs_back = zcomp( N2Qdat . Astes t ( idxs4back , : ) ) ;

The final steps are to compute a low noise image from the A-vector data. This is dis-
cussed in the next section.

Compute low-noise image from N2Q A-vector data

The output of the A-space method is a set of A-vectors for every pixel in the image or line
in CT. We can make a scalar image comparable to the other images by doing a vector
dot product of the A-vector at every pixel with a unit vector. This is called a generalized
projection. By varying the angle of the unit vector, we can cancel tissues from images
or make images comparable to a conventional projection image. This was first discussed
in Section 4.6 of my dissertation and in more detail in Sections 2.2 and 2.3 of this paper
available on my website.
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A problem with forming images from A-vector data is that the noise is highly negatively
correlated. As a result, the noise will depend on the angle of the unit vector. My my paper
described an alternate approach, which solved this problem. The approach is to transform
with data by using a whitening transform. My paper showed that with this approach, you
can make images with the best SNR available for a given detector type.

Whitening transforms in general are described in one of my previous posts, which is
available in Ch. 25 of my ebook. The whitening transform is computed with the code
in Listing 5. Line 2 computes the A-vector covariance from the data in the background
region. Line 3 computes the transform and line 4 applies it to the whole image. Line 5
converts the whitened image data to complex numbers to make it easy for the following
computations

Listing 5: Whiten code
1 %% compute whi ten xform −− see my blog posts ebook Eq . 25.23
2 [ V,D] = eig ( cov ( N2Qdat . Astes t ( idxs4back , : ) ) ) ;
3 Pwhiten = V∗D^( − . 5 ) ;
4 Aswhiten = N2Qdat . Astes t∗Pwhiten ;
5 zAswhiten = zcomp ( Aswhiten ) ;

Once we have the whitened data, we can compute images by taking a vector dot product
with a unit vector at each pixel and choose the angle of the unit vector to maximize the
SNR. This is done with the code in Listing 6. The angle for maximum SNR is chosen by
computing multiple images for a large number of angles from 0 to 2π and selecting the
one that gives the maximum value. Fig. 2 plots the results.

Listing 6: Computing generalized projection angle to maximize SNR
1 %% f i n d p r o j e c t i o n angle f o r maximum SNR
2 npro jang les = 100;
3 pro jang les = l inspace (0 ,2∗ pi , np ro jang les +1 ) ; % w i l l remove 1 so no wraparound
4 pro jang les = pro jang les ( 1 : npro jang les ) ;
5 snrs = zeros ( npro jang les , 1 ) ;
6
7 fo r kangle = 1 : npro jang les
8 impro j = zdot ( zAswhiten , exp (1 i ∗ pro jang les ( kangle ) ) ) ;
9 snrs ( kangle ) = SNRfeature ( impro j ) ;

10 end
11 idxpeak = f indpeaks ( snrs ) ;
12 asser t (~ isempty ( idxpeak ) ) ;
13 imN2Q = reshape ( zdot ( zAswhiten , exp (1 i ∗ pro jang les ( idxpeak ( 1 ) ) ) ) , ny , nx ) ;
14 snrN2Q = SNRfeature ( imN2Q ) ;

Results

The images with different detectors are shown in Fig. 3. These were all computed from
the same random data; the only difference is the processing to emulate the characteristics
of each detector type. As expected from the results in the last post, the Q image has the
lowest SNR, the N is somewhat better and the N2Q is close to the Tapiovaara-Wagner
SNR. The N2Q and TW images have different visual appearance with the N2Q seeming
to have higher contrast but the numerical value of the N2Q image SNR is close to the TW
image.
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Figure 2: SNR vs. generalized projection angle.
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Figure 3: Images with Q, N, N2Q, and TW detectors.
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Figure 4: Feature and background material cancelled images. These were computed from
the whitened data by selecting the generalized projection angle that results in
zero SNR for each type of material. The result shows only the background or
only the feature material in this two material case.



Conclusions

The N2Q detector with A-space processing has SNR close to the TW optimal. I showed
in my paper that images with high SNR can also be computed from N2 (two-bin PHA) and
NQ (simultaneous photon counts and integrated energy) detectors. The fact that these
low energy-resolution detectors give such good performance is due to the simplicity of the
underlying information, which can be completely summarized by the coefficients of two
basis functions. This information was not used by Tapiovaara and Wagner or other people
who have used their approach.

Notice that there are generalized projection angles in Fig. 2 with 0 SNR. These are the
angles that cancel the feature material from the image. The images, computed from the
whitened data, with zero SNR angles for the feature and background materials respec-
tively, are shown in Fig. 4. With the A-space method, we not only get high SNR images
but also have the additional A-space information that we can use for selective material
imaging. This is not possible with the Tapiovaara-Wagner approach.

–Bob Alvarez
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