aprendtech.com >> blog >> this post
If you have trouble viewing this, try the pdf of this post. You can download the code
used to produce the figures in this post.

Optional arguments for Matlab functions

The standard way to handle optional arguments in a Matlab function is to put them at the
end of the call list and only include them if you want to change them. This has a lot of
problems. First, what do you do if you want to change an argument that is somewhere
in the middle of the list but leave the rest unchanged? Some would suggest just putting
commas for the unchanged arguments but as far as | know the behavior is undefined.
Does this substitute an empty variable '[]' for the other arguments? Also, this makes it
hard to read the code. You have to count up the number of commas to figure out which
argument is being changed.

Finally, it is hard to program to populate the argument list leading to spaghetti code like
this

function f(argl,arg2,arg3)

1

2

3 if nargin < 3

4 arg3 = 'some_default’;
5 end

6

7 if nargin < 2

8

9

arg2 = 'another_default’;
end

Using cell array to populate arguments

In two posts in her blog (here and here), Loren Shure suggests using a cell array to
populate the arguments. Here is the version that handles inputs in the middle of the list:


http://www.aprendtech.com
http://www.aprendtech.com/wordpress
http://aprendtech.com/wordpress/?p=402
http://www.aprendtech.com/blog/P34Optargs/P34Optargs.pdf
http://www.aprendtech.com//blog/P34Optargs/P34Optargs.zip
http://blogs.mathworks.com/loren/2009/05/05/nice-way-to-set-function-defaults/
http://blogs.mathworks.com/loren/2009/05/12/optional-arguments-using-empty-as-placeholder/

function y = somefun2AltEmptyDefs(a,b, varargin)
% Some function that requires 2 inputs and has some optional inputs.

1
2
3
4 % only want 3 optional inputs at most

5 numvarargs = length (varargin);

6 if numvarargs > 3

7 error ('myfuns:somefun2Alt: TooManylnputs’,
8 ‘requires_at_most_3_optional_inputs’);
9 end

11 % set defaults for optional inputs
12 optargs = {eps 17 @magic};

14 % skip any new inputs if they are empty
15 newVals = cellfun (@(x) ~isempty (x), varargin);

17 % now put these defaults into the valuesToUse cell array,
18 % and overwrite the ones specified in varargin.

19 optargs(newVals) = varargin(newVals);

20 % or

21 % [optargs{l:numvarargs}] = varargin{:};

23 % Place optional args in memorable variable names
24 [tol, mynum, func] = optargs{:};

This is nice but you still have the problem of counting commas to figure out which argu-
ment is changed. Also, you would have to put error checking the arguments into separate
code, which separates the processing into two pieces leading to possible inconsistencies
between the parts of the code.

Named optional arguments

My preference is to use the named optional arguments style shown below:

1 retval = f(reqargl, 'optionalarg2’,arg2, 'optionalarg3’,arg3);

This style has possible required arguments first followed by possible pairs of ‘optional_argument_name’,argun
A single argument_name can be used for flags. This makes the code much more readable
and is more flexible than the comma method. But how to implement it?

Using inputParser

One possibility is a recent addition to Matlab called inputParser. Here is a link to de-
scription on the Mathworks site. | have not used it but from the description | see several
problems. First, validating the arguments requires specifying an additional function, either
an anonymous function, which has limited capability, or a separate subfunction that again
separates the error checking from the processing, which | think is error-prone. Another
problem is that it is a recent addition so it limits the users of your code to those with ver-
sions that support it. Finally, it is a black box and Mathworks proprietary. | could not find
the source code for it.


http://www.mathworks.com/help/matlab/ref/inputparserclass.html

Using the switch approach

We finally come to my favorite, which | use in many of the functions | distribute with this
blog. This implements the named optional arguments style in an easy to understand block
of code that processes and validates the arguments at the same time. An example of its
use is shown below for my CT'recon function.



O©CoO~NO UL WNPF

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

% handle the optional arguments—first process the required arguments
nreqargs = 1,
if nargin <nreqargs
fprintf (’syntax:_[img,H]_=_CTrecon(prj,varargin)’);
error ('%d_is_too_few_arguments’, 6 nargin );
end
% process the required arguments and define the defaults
[nlines , nangles] =size (prj);
angles = linspace (0,180,nangles+1);
angles = angles(1:(end—1) ); % make sure angles do not wrap around
interpolation = ’linear’;
filter _type = 'Ram-Lak’;
freq_cutoff = 1;
% populate the optional arguments if present
if (nargin >nreqargs)
i=1;
while (i<=size (varargin ,2))
switch lower (varargin{i})
case 'angles’; angles=varargin{i+1};
if numel(angles) ~= nangles
error ('CTrecon: _length_of_angles_array, %d_must_equal_size (prj,2) %o
end
i=i+1;
case ’'interpolation’; interpolation=varargin{i+1};
if ~ischar(interpolation)
error ('CTrecon: _,interpolation_parameter_must_be_a_string ');
end
i=i+1;
case ’'filter_type’; filter _type=varargin{i+1};
if ~ischar(interpolation)
error ('CTrecon: _filter_type_must_be_a_string');
end
i=i+1;
case ’'freq_cutoff’; freq_cutoff=varargin{i+1};
if (freq_cutoff<0) || (freq_cutoff>1)
error ('CTrecon: _freq_cutoff_%g_must_be_between_0_and_1', freq_cutof
end
i=i+1;
otherwise
error ('CTrecon: _Unknown_argument _%s_given ', varargin{i});
end
i=i+1;
end
end

The CTrecon function has one required argument and four optional arguments. The
first part from lines 1-14 checks the required arguments and defines the default values.
The while loop starting at line 18 goes through the additional arguments passed to the



function. The switch statement processes the optional arguments one per case. Each
case block loads the argument from varargin and then has user defined validation of
the argument. These are together so there is no problem with consistency. The code
is straightforward and can be readily modified by the user. For example to require case
sensitive arguments, do not use the lower() function in line 19 and adjust the string for
each case block. This approach does not use any proprietary functions so it will work with
almost all versions of Matlab and Octave.

The example above did not include a switch variable to handle a logical condition such
as a verbose option. In that case implement the variable without the ¢ = 7 + 1 as shown
below:

1 verbose = false;

2

3 ...

4 while (i<=size (varargin ,2))

5 switch lower (varargin{i})

6

7 case ’'verbose’; verbose = true;
8 case

Conclusion

| have described several different methods to handle optional arguments. In general, |
think the method should be easy to understand so future users of your code can modify
and extend it. It should allow you to test and validate the inputs so you can give feedback
to the user for improper inputs. Finally, the processing and the validation should be done
at the same time to reduce the chance of inconsistencies when the code is modified. |
think the switch method satisfies these criteria and | use it in most of my functions.

—Bob Alvarez

Last editedMarch 15, 2013
(©2013 by Aprend Technology and Robert E. Alvarez
Linking is allowed but reposting or mirroring is expressly forbidden.

References



