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The NKQ detector

The NKQ detector introduced in my paper[1] is a generalization of the NQ where instead
of just counting the photons we use pulse height analysis (PHA) to separate the photons
into K bins depending on their energies and simultaneously measure their total energy.
This gives performance similar to PHA with the number of bins plus one so it may be
easier to implement. As with the NQ detector, the integrated energy Q can be used in
regions where high count rate leads to excessive pulse pileup.

Covariance of NKQ Detector Measurements

With no pulse pileup, the numbers of photons in the individual PHA bins, {N1, N2, . . . NK},
are independent Poisson random variables with parameters λk, k = 1 . . . K. The total
number of photons, N , is the sum

N =
K
∑

k=1

Nk.

Since the sum of independent Poisson random variables is also a Poisson random vari-
able with parameter equal to the sum of the parameters of the terms, N is Poisson with
parameter

λ =
K
∑

k=1

λk.

The NKQ detector also measures the total energy Q of all the photons.
The mean value vector of the measurements is
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To derive the joint statistics, we only need to consider the two bin case and derive the re-
sults for cov(N1, Q). These results can be immediately generalized to the K bin case be-
cause, from the point of view of the analysis, all the other measurements can be summed
to a single Poisson random variable that is independent of N1,so is equivalent to the two
bin case. Also, without loss of generality, the results for N1 are applicable to any of the
other individual measurements. The covariance of N1 and Q is defined as

cov(N1, Q) = 〈(N1 − 〈N1〉)(Q− 〈Q〉)〉 . (1)

Expanding the product
cov(N1, Q) = 〈N1Q〉 − 〈N1〉 〈Q〉 . (2)

Expanding the first term

〈N1Q〉 =
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Prob{N1 = n1}Prob{N2 = n2}.

(3)
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The E random variables have same probability distribution so
〈
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where 〈E〉
1

denotes the mean value of the instances of E in the first bin. Similarly
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Substituting in (3)
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where the last step uses the fact that N1 and N2 are independent. The second moment
of a Poisson random variable is
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1 + λ1.

The final result for the first term in (2) is
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In the second term in (2), 〈N1〉 = λ1 and 〈Q〉 = (λ1 + λ2) 〈E〉. The overall mean value 〈E〉
can be expressed in terms of the bin mean values as
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so the second term is
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Combining the first and second terms gives the final result

cov(N1, Q) = λ1 〈E〉
1
.

By the argument stated above, this can be generalized to

cov(Nk, Q) = λk 〈E〉k .

As previously derived the variance of Q is σ2

Q = λ
〈

E2
〉

, so the covariance matrix is

Cov({Nk, k = 1 . . . K} , Q) =
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Covariance of logarithm of NKQ measurements

The same arguments used in the previous section are also applicable to the logarithms of
the measurements, so I will derive the covariance of log(N1) and log(Q) for the two group
case. Using the general result

cov [log(N1), log(Q)] = 〈log(N1) log(Q)〉 − 〈log (N1)〉 〈log (Q)〉 .

As with the derivation for the NQ detector, the first term is

〈log(N1) log(Q)〉 ≈ log [〈N〉] log [〈Q〉] +
cov(N1, Q)

〈N1〉 〈Q〉
.

Inserting the results from the previous section

cov(N1, Q)

〈N1〉 〈Q〉
=

〈E〉
1

〈Q〉
.

Combining these

cov [log(N1), log(Q)] =
〈E〉

1

〈Q〉

Using the result from the NQ detector for the variance of log(Q) and recalling that F =
〈E2〉
〈E〉2

and 〈Q〉 = λ 〈E〉, the covariance matrix is

Cov ({log(Nk), k = 1 . . . K} , log(Q)) =
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Monte Carlo simulation of N2Q statistics

The code for this post shows how to generate Fig. 1, which compares the N2Q covari-
ance and correlation with the theoretical results in Eq. 1. These quantities are plotted
versus the inter-bin separation energy of the two bin PHA. Note that the correlation (and
covariance) of the counts with Q increases for N1 but decreases for N2 as the threshold
energy increases.

Conclusion

The theoretical formulas derived in this post fit the Monte Carlo simulation results. I was
not able to derive simple analytical formulas for the NKQ SNR so future posts will compute
it numerically and compare it to the optimal SNR with complete information and also to
other types of detectors.
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Figure 1: N2Q statistics. Shown are both the covariance and the correlation of the two
photons counts and the total energy. The solid lines are the theoretical values
from Eq. 4 while the symbols show the Monte Carlo values.
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