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NQ detector SNR

In this post, I continue to discuss the results in my paper “Near optimal energy selective
x-ray imaging system performance with simple detectors[1].” The paper discusses funda-
mental limits on the signal to noise ratio of x-ray detectors with energy spectrum informa-
tion. It also describes how we can design practical systems with low energy resolution
detectors whose performance gets close to the optimal limit. The paper uses statistical
detection theory to show that the performance depends on the signal to noise ratio (SNR)
and derives a formula (see this post) to compute the SNR as a function of the detector
spectral response and noise properties. In this post, I use the formulas for the NQ (simul-
taneous photon counts and integrated energy) detector data statistics from my last post to
compute the SNR. We can use the formulas to show that the NQ signal (almost) always
has a larger SNR than the N and Q individual signals. The SNRs are equal if the spectrum
has zero-width.

SNR with NQ data

The general formula for the SNR for the simple imaging task used in my paper is (see Eq.
3 of this post)

SNR2 = δATC−1
A δA = δATMTC−1

L MδA. (1)

In (1), δA is the difference in the A-vector between the region with the feature and the
background region, the elements of the M matrix are the effective values of the basis
functions in the detector energy spectra, and CL is the covariance of the logarithm of the
detector data. In my last post, I showed that for the NQ detector this is

CL = cov(log(N), log(Q)) =
1

λ

[

1 1
1 F

]

(2)

where λis the expected value of the photons counts and F = 〈E2〉/〈E〉2 is the excess
variance factor.

SNR with N and Q individually

First, I will derive the SNR for the individual detector signals, the photon counts and the
total energy. We can compare these to the SNR with the complete data. With individual
signals, the covariance matrix is a scalar and is equal to the appropriate diagonal element
of (2). Let’s use the photon counts as the first example. From (2), the covariance (actually
variance) for the counts only is CL,N = 2/λ. The factor of 2 is due to the definition of
the imaging task. The task assumes there are two measurements so λ/2 is the average
photons per measurement. The M matrix for the photon count signal, MN is the row
vector

MN =
[

MN1 MN2

]

(3)
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where the effective values are

MNk =

∫

µk(E)S(E)e−A1µ1(E)−A2µ2(E)dE
∫

S(E)e−A1µ1(E)−A2µ2(E)dE
= 〈µk〉N , k = 1, 2 (4)

and µk(E), k = 1, 2 are the basis functions. The difference vector is

δA = tf

[

1
−1

]

(5)

where tf is the thickness of the feature.
Substituting these in the general formula for the SNR (1) and carrying out the matrix

multiplications (in the code package I provide a maxima script d2convN.max that verifies
the formula)

SNR2
N =

λt2f
2

(MN1 −MN2)
2 (6)

From (4) MN1 −MN2 = 〈µ1 − µ2〉N = 〈δµ〉N so we can also write the SNR as

SNR2
N =

λt2f
2

〈δµ〉2N (7)

The SNR for the Q signal can be derived similarly. From (2) the variance of logQ for the
imaging task is CL,Q = 2F/λ. The M matrix is MQ =

[

MQ1 MQ2

]

where

MQk =

∫

µk(E)ES(E)e−A1µ1(E)−A2µ2(E)dE
∫

ES(E)e−A1µ1(E)−A2µ2(E)dE
= 〈µk〉Q , k = 1, 2

carrying out the matrix multiplications,

SNR2
Q =

λt2f
2F

〈δµ〉2Q . (8)

Comparing the two SNR formulas, we note that F ≥ 1 and since the energy spectrum
is shifted towards higher energy than the photon number spectrum and for ordinary body
material attenuation coefficients without K-edges in the energy region of interest, µ(E) is
monotonically decreasing, both factors of SNR2

Q are smaller than those of SNR2
N and

SNR2
N ≥ SNR2

Q (9)

The equality in (9) only occurs with a zero-width spectrum (also called monoenergetic)
where there is no energy spectrum information.

SNR with NQ data

With the full NQ data, we can use the covariance in (2) after substituting λ → λ/2. The M

matrix is

MNQ =

[

MN1 MN2

MQ1 MQ2

]

(10)

Substituting in the general SNR formula (1) we can show after quite a bit of algebra (see
the Maxima script d2NQ.max in the listing below)
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SNR2
NQ =

λt2f
2






〈δµ〉2N +

(

〈δµ〉N − 〈δµ〉Q

)2

F − 1






. (11)

1 /∗
2 d2NQ.max
3 Maxima batch f i l e to der ive d^2 fo r NQ de tec to r
4 to invoke copy and paste i n t o Maxima :
5 batch ( "G : \ \ P ro jec ts \ \ Blog \ \ Posts \ \ P31D2nq2 \ \ code \ \ d2convNQ.max " ) $
6 REA 6/13−10/23/09 Added N and Q independent
7 ∗ /
8 k i l l ( a l l ) $
9 " The d^2 USING NQ DETECTOR" $

10 " the M matr ix w i th genera l coe f f s " $
11 M: mat r ix ( [ mn1,mn2 ] , [ mq1,mq2 ] ) $
12 " The delta_A vecto r fo r basis ma te r ia l s fea tu re and background " $
13 dA : transpose ( mat r ix ( [ 1 , −1 ] ) ) $
14 " The 2 spectrum log (NQ) covar iance matr ix , f =<E^2>/<E>^2: Note F>1"$
15 CL : ( 1 / lambda )∗ matr ix ( [ 1 , 1 ] , [ 1 , f ] ) $
16 CLi : i n v e r t (CL) $
17 " The inverse o f the A covar iance mat r ix " $
18 RAi : transpose (M) . CLi .M$
19 " The SNR^2"$
20 d 2 f u l l : ra ts imp ( transpose (dA ) . RAi . dA) $
21 " d2 i n terms o f dn and dq " $
22 dq :mq1−mq2$
23 dn :mn1−mn2$
24 d2 : lambda ∗ ( dn^2 + ( dn−dq ) ^ 2 / ( f −1))$
25 rats imp ( d2−d 2 f u l l ) ;
26 " d^2 USING N and Q independent " $
27 CL : ( 2 / lambda )∗ matr ix ( [ 1 , 0 ] , [ 0 , f ] ) $
28 CLi : i n v e r t (CL) $
29 " The inverse o f the A covar iance mat r ix " $
30 RAi : transpose (M) . CLi .M$
31 " The SNR^2"$
32 d2NQi fu l l : ra ts imp ( transpose (dA ) . RAi . dA) $
33 d2 i : lambda ∗ ( dn^2 +dq ^2 / f ) / 2 $
34 rats imp ( d2NQi fu l l−d2 i ) ;

The d2mQ.max script defines the M, δA, and CL matrices in lines 11-15. The general
SNR formula (1) is implemented in line 20. I attempted to simplify it using the ratsimp
function but the result is still quite complex. One way to proceed is to copy the numerator
and apply the ratsimp function again. After playing around with it, I came up with the
formula in line 24, which is the same as Eq. 11. I verified that the formula is correct in
line 25, which subtracts the simplified from the original formula. When you run the script,
you will see that the result is zero. That is, the formulas are the same. Lines 26 to 34
evaluate the formulas with independent N and Q measurements, which will be discussed
in the next section.



Comparing (11) with the N-only SNR (7)

SNR2
NQ = SNR2

N +
λt2f
2







(

〈δµ〉N − 〈δµ〉Q

)2

F − 1






(12)

Since the second term is always greater than or equal to zero, we can combine this with
the comparison of N and Q SNR (9) to show that

SNR2
NQ ≥ SNR2

N ≥ SNR2
Q (13)

Again, the equals condition only occurs with a zero-width spectrum.

SNR with NQ measured at different times

As an interesting aside, suppose we measure the N and Q signals at different times in-
stead of simultaneously. In that case, the signals are statistically independent so the
covariance is

CL,independent =
4

λ

[

1 0
0 F

]

. (14)

The factor of 4 is necessary since we make 4 measurements, two in the feature and two
in the background regions. The number of photons per measurement is then λ/4. The M
matrix is the same as for the NQ detector (10) so we can substitute in the general formula
for the SNR (1) and carrying out the algebra (the d2NQ.max maxima script also does this
case in lines 26 to 34),

SNR2
NQ−independent =

λt2
f

4

[

〈δµ〉2N +
〈δµ〉2Q
F

]

.

= 1
2(SNR2

N + SNR2
Q)

(15)

Comparing the independent with the simultaneous NQ SNR (12), it is not clear which has

a larger SNR. In general 1
F

< 1
F−1 but 〈δµ〉2Q >

(

〈δµ〉N − 〈δµ〉Q

)2
. The second inequality

follows because 〈δµ〉N and 〈δµ〉Q will either both be positive or both negative. We can
evaluate the formulas numerically for a particular case.

Discussion

The formulas derived in this post can also be compared at least numerically to the SNR
with a pulse height analysis detector that I derived in a previous post and also to the ideal
Tapiovaara-Wagner SNR. I will describe this computation in a future post.

—Bob Alvarez
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