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NQ detector stats

Another way to get energy selective data is to measure the total number of counts and
their total energy. This may not seem to provide energy-dependent information but if you
look at it from the point of view of energy weighting, there is information. We can look
at the total counts as the integral of the spectrum multiplied by a constant function of
energy, where the constant is one. On the other hand, the total energy is the integral of
the spectrum multiplied by the function f(E) = E. This weights the higher energies more
than the lower and therefore has different information than the counts. This is actually
enough difference to give SNR comparable to two-bin PHA.

I call this NQ since I use the symbols N for counts and Q for total energy but its inventors
called it the CIX detector for simultaneously Counting and Integrating X-ray detector. The
concept was originally introduced by Overdick et al.[1] to address the count rate problem
with the idea to use the count signal at low count rates and the integrated energy at high
count rates. Later Roessl et al.[2] noticed that the two quantities provide energy selective
information and showed that the positive correlation between N and Q helps to reduce the
variance of the output A-vector signal.

In this post, I will derive the expected value and covariance of the N and Q signals. We
can then use these results with the statistical detection theory method of my paper[3] to
compute the SNR and to compare it to other types of detectors and to the optimal SNR.

Expected value and variance of photon counts and total energ y

The counts have a Poisson distribution so the expected value and variance are equal to
the Poisson parameter λ.

[

〈N〉 = λ
σ2
N = λ

]

The total energy is a compound Poisson random variable since it is the sum of a random
number of random photon energies.

Q =
N
∑

k=1

Ek

The probability distribution function of the energies is the spectrum normalized so its inte-
gral is equal to one

pE(E) =
S(E)

∫

S(E)dE

We can derive the expected value and variance of Q using its moment generating func-
tion (MGF), which can be derived from its definition MQ =

〈

etQ
〉

as shown in Eq. 1
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MQ(t) =
〈

etQ
〉

definition

=
〈〈

et
∑

n

k=1
Ek

〉

|N = n
〉

conditional expectation

=
〈〈

etE1 · · · etEn

〉

|N = n
〉

=
〈〈

etE
〉n

|N = n
〉

Ek i.i.d.

= 〈ME(t)
n|N = n〉 ME(t) =

〈

etE
〉

by definition

=
〈

en(log ME)|N = n
〉

= MN (log ME)

(1)

MQ in Eq. 1 is valid for all probability distributions of the count variable N . If N is Poisson,
its MGF is

MN (tN ) = exp
[

λ
(

etN − 1
)]

Substituting in (1), the MGF becomes

MQ (t) = exp [λ (ME (t)− 1)] (2)

The expected value can be calculated from the first derivative of (2) evaluated at t = 0

〈Q〉 =

[

∂MQ

∂t

]

t=0
= λ exp [λ (ME (t)− 1)]

∂ME

∂t
| t=0 (3)

From the definition, it is a general property of any MGF that

M(0) = 1
∂ME

∂t
(0) = 〈E〉

Using these in (3)
〈Q〉 = λ 〈E〉

Variance of Q

Differentiating the first derivative (3) again

∂2MQ

∂t2
= λ exp [λ (ME (t)− 1)]

[

∂2ME

∂t2
+ λ

(

∂ME

∂t

)2
]

. (4)

Evaluating (4) at t = 0, and noting that
[

∂2M
∂t2

]

t=0
=

〈

E2
〉

〈

Q2
〉

= λ
〈

E2
〉

+ λ2 〈E〉2 .

The variance of Q can then be computed from the general formula for the variance

var(Q) =
〈

Q2
〉

− 〈Q〉2

= λ
〈

E2
〉

+ λ2 〈E〉2 − λ2 〈E〉2

= λ
〈

E2
〉



Covariance of N and Q

We can compute the covariance using the general formula

cov(N,Q) = 〈NQ〉 − 〈N〉 〈Q〉 . (5)

The expected value of the product can be computed using conditional expectation

〈NQ〉 =
〈

n
〈

∑N
k=1Ek

〉

|N = n
〉

conditional expectation
=

〈

n2 〈E〉 |N = n
〉

Ek iid
= 〈E〉

(

λ+ λ2
)

The last step follows because the second moment of the Poisson is
〈

N2
〉

= σ2
N + 〈N〉2 =

λ+ λ2

Substituting in (5), the covariance is

cov(N,Q) = λ 〈E〉+ λ2 〈E〉 − λ2 〈E〉 = λ 〈E〉 .

The covariance matrix is therefore

cov(N,Q) =λ

[

1 〈E〉
〈E〉

〈

E2
〉

]

(6)

Expected value and variance of logarithm signals

We can use these formulas with the general results for the logarithm of signals from my
previous post to derive the parameters. In the previous post I derived the expected value
and variance of the log of counts.

〈log(N)〉 = log(λ)
var (log(N)) = 1

λ

The validity of the log formulas in that previous post was justified for photon counts but
since both the expected value and variance of Q are proportional to λ, the previous justi-
fications are also applicable to Q. The log parameters are then

〈log(Q)〉 = log(〈Q〉)

var (log(Q)) = var(Q)

〈Q〉2
= F

λ

cov (log(N), log(Q)) = cov(N,Q)
〈N〉〈Q〉 = 1

λ

(7)

where the excess variance factor F = 〈E2〉/〈E〉2.
The covariance matrix of the log data is

cov(log(N), log(Q)) =
1

λ

[

1 1
1 F

]

(8)

Monte Carlo simulation

I tested these formulas with a Monte Carlo simulation. As usual, you can download the code
to reproduce these features. Since the distribution of the counts is Poisson, which is well-
known, I did not plot the results although you can examine them when you run the code.
Fig. 1 plots the statistics of the total energy Q.
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Figure 1: Monte Carlo test of Q statistics. Shown are the expected value, the variance,
and the N,Q covariance. As you can see from Eq. 6, the NQ covariance is equal
to the Q expected value so the data overlap.

I discussed statistical tests for normally distributed data in a previous post. Basically
they are extensions of the normal probability plot, which plots the sorted data using dis-
torted coordinates so normally distributed data will fall on a straight line. Deviations from
the line may indicate that the data are not normally distributed. The results of the test
are themselves random so the code implements repeated tests for each counts value that
are then averaged using a value of “1” for the normal hypothesis and “0” to reject the
hypothesis. The averaged results to give a “probability” to accept the normal distributed
hypothesis. We would expect and Fig. 2 shows that the probability increases as the mean
counts increase.

Conclusion

I have derived formulas for the parameters of a multivariate normal distribution, the ex-
pected values and covariance, for the NQ detector. I verified the formulas with a Monte
Carlo simulation. I also showed that the multivariate normal is a valid probability distribu-
tion model for counts greater than about 100 for linear data and 500 for log data. I will use
the formulas in later posts to compute the SNR using the approach of my paper[3]

—Bob Alvarez
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Figure 2: Probability to accept multivariate normal distribution for N,Q data versus the
expected counts. The probability was tested using Royston’s algorithm[4] as
implemented by the Matlab function roystest.m[5].
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