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SNR with PHA vs. number of bins

In this post, I will discuss the signal to noise ratio (SNR) of a photon counting detector with pulse height analysis
(PHA). I will show that it approaches the ideal full-spectrum SNR as the number of bins gets large. I will also show
that we can get quite close to the ideal value even with a small number of bins, which was one of the main points in
my paper.

I will begin by re-visiting a result from my last post that the Cramèr-Rao lower bound (CRLB) with multivariate
normal log of photon count data assuming a constant covariance is nearly equal to the accurate matrix that includes
the variation of the covariance. The derivation becomes problematic with a large number of bins since the mean
value in each bin may be small enough so the normal approximation to the counts is not valid. I will show an alternate
derivation that uses the Poisson model of the count data, which is valid for small counts. The result is formally the
same as with the normal approximation so the CRLB formula can be applied for any number of bins. This result is
new and was not included in my paper.

Imaging task for SNR with A-space data

Summarizing my previous development, to determine the SNR with energy spectrum information I analyzed the
imaging task shown in Fig. 1. I introduced the A-space description by using the attenuation coefficients of the
background µb and feature µf materials as the basis function. With this basis set, the a vectors for the feature and
background materials are simply

af =

[

1
0

]

, ab =

[

0
1

]

.

The A-vector in the background region is Ab = tbab while in the feature region it is Af = (tb − tf ) ab + tfaf . We can
apply the statistical detection theory model described in my previous post by assuming that the A-vector data are
described by a multinormal distribution with expected values under two hypotheses: 〈AH0〉 = Ab and 〈AH1〉 = Af

and a covariance CA. From my last post, the performance will depend only on the signal to noise ratio

SNR2 = δATC−1
A δA (1)

where δA = 〈AH1〉 − 〈AH0〉 =tf (af − ab).

δA = 〈AH1〉 − 〈AH0〉
= tf (af − ab)

= tf

[

1
−1

]

In general, the covariance of the A-space data depends on the estimator used. But we know that the ’minimum’
covariance (suitably defined for matrix data) is the CRLB, so we can determine the optimal performance by using it
for the covariance CA. In a previous post, I showed that we could use a linearized model with multivariate normal
noise data. With this model, the CRLB is

CA =
(

MTC−1
L M

)−1
(2)

where M = ∂L
∂A

is the gradient of log of the x-ray measurements in A-space evaluated at the operating point of the
model and CL is the covariance of the log data with noise. The SNR with the imaging task in Fig. 1 is

SNR2 = δATC−1
A δA = δATMTC−1

L MδA (3)
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Figure 1: Imaging task for SNR computationn

Table 1: Notation

photon counts N =











n1

n2

· · ·
nK











mean counts 〈N〉 =











〈n1〉
〈n1〉
· · ·
〈nK〉











=











g1 (A)
g2 (A)
· · ·

gK (A)











= g (A)

covariance C =







〈n1〉 0 0
0 · · · 0
0 0 〈nK〉






atten. coeff. M =











µ11 µ12

µ21 µ22

· · · · · ·
µK1 µK2











CRLB with complete energy information

I would like to apply this model to show that the SNR approaches the full spectrum as the number of bins becomes
large. However, as mentioned, with a large number of bins the data may not satisfy the assumptions of a large
number of counts. In that case, I will use a Poisson model, which is valid for small mean counts, to show that the
same formula (2) can be used in all cases.

I will derive the CRLB for independent multivariate Poisson data. As I have discussed in a previous post, this is a
good model for the PHA counts if the deadtime is negligible compared to the mean inter-arrival time of the photons.
Table 1 lists the notation I use in this post.

It is convenient to use the Fisher information matrix F, which is the inverse of the CRLB. As shown in Theorem
3.2 of Kay[1], F has components which are the negative of the expected value of the second derivative of the log of
the likelihood L = log [Pr (N;A)]

Fij = −

〈

∂2L

∂Ai∂Aj

〉
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The bin counts nk are independent Poisson random variables, which have a distribution function

Pr (nk;A) =
e−〈nk〉 〈nk〉

nk

nk!
=

e−gk(A)gk (A)nk

nk!

where the expected value 〈nk〉 = gk (A) is assumed to be a function of the A-vector. Since the nk are independent
the joint probability is the product of the distributions and the log of the likelihood is

L =
K

∑

k=1

[−gk + nklog (gk) − log (nk!)] .

To evaluate the Fisher information, we need the derivatives. The first derivative can be expressed as a matrix
product of the gradient of g, the inverse of the photon count covariance C−1, and the difference of the measured
data and the expected values. Since the count data are independent, their covariance matrix and its inverse are

C =







g1 0
· · ·

0 gK






, C−1 =







1/g1 0
· · ·

0 1/gK







∂L
∂Aj

=
∑

[

∂gk

∂Aj

(

nk−gk

gk

)]

= ∂gT

∂Aj







1/g1 0
· · ·

0 1/gK






(N − g)

= ∂gT

∂Aj
C−1 (N − g)

Note that this covariance is valid even with small number of counts per bin.
The second derivative is

∂2L

∂Ai∂Aj

=
∂

∂Ai

[

∂gT

∂Aj

C−1

]

(N − g) −
∂gT

∂Aj

C−1 ∂g

∂Ai

.

The expected value of the first term is zero since the term in the bracket does not depend on the data and〈N〉 = g.
The second term does not depend on the data so

Fij = −
〈

∂2L
∂Ai∂Aj

〉

= ∂gT

∂Aj
C−1 ∂g

∂Ai

The full matrix is

F =
∂gT

∂A
C−1 ∂g

∂AT
. (4)

where I have used the notation of van den Bos[2] Appendix D so

∂g

∂AT
=







∂g1

∂A1

∂g1

∂A2
· · ·

∂g2

∂A1

∂g2

∂A2
· · ·

· · · · · · · · ·







and
(

∂g

∂AT

)T
= ∂gT

∂A
.

If the number of bins is large so the energy width is small, we can use the Beer’s law exponential model of the
expected value of the counts

gk (A) = 〈nk〉 = nk0 exp [−µk1A1 − µk2A2]



where nk0 is the mean of the number of photons incident on the object in the k′th energy bin. Differentiating,

∂gk

∂Ai

= −µkigk.

We can express all the components as a matrix multiplication

∂g

∂AT
= −MTC

and the Fisher matrix (4) is
F = MTCM (5)

where I have used the fact that all covariance matrices are symmetrical so CT = C.
The Fisher information matrix derived in my previous post assuming log data is F = MTC−1

L M (see Eq. 8 of my
previous post, which I reproduce here)

cov
(

ÂMLE

)

=
(

MTC−1
L M

)−1
(6)

Recall that the CRLB is the inverse of F, so the Fisher information matrix from my previous post is the term in the
parentheses of Eq. 6. With photon count data, the variance is the inverse of the number of counts and since CL is
a diagonal matrix, C−1

L = C. Thus Eq. 5 has the same form as the Fisher information of constant covariance multi-
variate normal data, derived in my previous post but here it is derived without the assumptions that the covariance
is constant and the mean count values are large. Therefore, we can use the same formula (2) for the covariance of
the A-space data for any number of bins.

SNR for K bin PHA

To derive the SNR with K-bin data, we need to evaluate Eq. 3 with

δA = tf

[

1
−1

]

, M =







M11 M12

· · · · · ·
MK1 MK2






, C =







〈n1〉 0
· · ·

0 〈nK〉






.

This is straight-forward but tedious, so I used Maxima to automate the matrix computation. Maxima is an open-
source symbolic math program that is available for download here. A good introduction is available here. I develop
the code by writing a batch script with a text editor and then running it using the Maxima batch command. For
example, I copy this command to the clipboard and then paste it into the WxMaxima GUI. With modern computers,
the evaluation is very fast and we can see the results almost immediately

batch ( "E : \ \ P ro jec t s \ \ Blog \ \ Posts \ \ P29D2kbin \ \ code \ \ SNRkbin .max " ) $

A Maxima script to compute the SNR with a 3 bin detector is
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/ *
SNRkbin .max
Maxima batch f i l e to der ive SNR^2 for K bin PHA
to invoke copy and paste i n t o Maxima :
batch ( "E : \ \ P ro jec t s \ \ Blog \ \ Posts \ \ P29D2kbin \ \ code \ \ SNRkbin .max " ) $
REA 2012−Feb−14 11:38
COPYRIGHT: © Aprend Technology , 2012. A l l r i g h t s reserved .

* /
" clear a l l workspace v a r i ab l es " $
k i l l ( a l l ) $
"The SNR^2 USING 3 bin PHA" $
" the M mat r ix w i th general coe f f s and i t s t ranspose " $
M: mat r ix ( [ m11,m12 ] , [ m21,m22 ] , [ m31,m32 ] ) $
MT: transpose (M) ;
" the covar iance mat r ix " $
C: d iagmat r i x ( 3 , 0 ) ;
" f i l l the diagonal " $
S: mat r ix ( [ n1 , n2 , n3 ] ) ;
for k :1 th ru 3 do C[ k , k ] : S[ 1 , k ] $
" d i s p l ay c "$
C;
"The delta_A vec tor for basis mate r ia l s f ea t u re and background " $
dA : mat r ix ( [ 1 ] , [ −1 ] ) $
dAT : transpose (dA ) ;
" the SNR^2"$
d2 : rats imp (dAT .MT.C.M. dA ) ;
" f a c t o r the i n d i v i d u a l terms "$
d2simp : n1 * (m12−m11)^2 + n2 * (m22−m21)^2 + n3 * (m32−m31) ^ 2 ;
" v e r i f y c o r rec t " $
rats imp ( d2−d2simp ) ;

The initial result was (we can use edit|”copy as Latex” in the Maxima GUI to copy expressions and then paste them
into a Latex or Lyx file)

(

m322 − 2m31m32 + m312
)

n3 +
(

m222 − 2m21m22 + m212
)

n2 +
(

m122 − 2m11m12 + m112
)

n1.

The program did not factor the quadratics in the parentheses but this is easily done. The SNR with 3 bins generalizes
to K bins as

SNR2
K =

t2f
2

K
∑

k=1

〈nk〉 〈µk2 − µk1〉
2
k (7)

As explained in my paper, the factor of 1/2 is introduced to make the imaging task SNR comparable to the detection
theory SNR, which assumes only one measurement. The notation 〈µ〉k means the weighted mean of the function
µ(E) in the spectrum of bin k. For example, if bin k corresponds to energies from Ek to Ek + ∆E and S(E) is the
spectrum incident on the detector, then the weighted mean is

〈µ〉k =

∫ Ek+∆E

Ek
µ(E)S(E)dE

∫ Ek+∆E

Ek
S(E)dE
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Figure 2: SNR vs. number of bins and object thickness. The SNR is normalized by dividing by the ideal with full
energy spectrum information.

Using the notation δµ = µ2(E)−µ1(E), for the difference in attenuation coefficient functions, Eq. 7 is the same as
Eq. 35 of my paper

SNR2
K =

t2f
2

K
∑

k=1

〈nk〉 〈δµ〉
2
k .

Simulate K-bin SNR

I wrote Matlab code to compute the SNR as a function of the number of PHA bins. I normalized the result by
dividing by the ideal, full-spectrum SNR. I also computed the results as a function of object thickness. Recall that
the A-vectors for this kind of object lie along a straight line in the A-plane. The results are shown in Fig. 2.

Conclusions

There are two interesting features of Fig. 2. First, as we expected, the SNR approaches the ideal result as the
number of bins gets larger. This is shown mathematically in my paper using the mean value theorem. The second
interesting aspect is that the performance with a small number of bins depends strongly on the object thickness. My
interpretation of this result is that as the object thickness increases the spectral width also decreases due to beam
hardening. Therefore, there is less energy information and it is easier for a low energy-resolution detector to extract
it. The improvement occurs for relatively thin objects. From the figure, the three-bin SNR with a 5.5 cm object is
about 93% of the ideal value.
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