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A-space covariance from x-ray detector noise

My last post showed that detection performance is determined by the signal to noise ratio
(SNR). I derived a formula for the SNR with multispectral measurements, which depends
on the covariance of the A-space data. This post shows how to compute the A-space
covariance from the x-ray data noise and the effective attenuation coefficient matrix. In
general, this depends on the type of estimator used so instead I will use the Cramèr-Rao
lower bound (CRLB), which is the minimum covariance for any unbiased estimator. This
gives a general result independent of the specific estimator implementation. I will show
that the constant covariance CRLB is sufficiently accurate for our purposes. These results
will allow us to compute signal to noise ratios for limited energy resolution measurements
that are directly comparable to the Tapiovaara-Wagner[1] optimal SNR with complete en-
ergy information.

Maximum likelihood estimator with scalar normal data

In a previous post I showed that we could use a linearized model for the transmitted x-ray
data

δLwith_noise = MδA+w (1)

where L = − log (I/I0) is the log of the transmitted flux I , I0 is the transmitted flux with
no object in the beam, M = ∂L

∂A is the gradient of the measurements in A-space, and w
is a zero-mean multinormal random variable. Eq. 1 is linearized about an operating point
(Lo,Ao) so δL = L− Lo and δA = A−Ao. To understand the estimator, I will start by
assuming scalar data. The linearized model is then ( I will drop the δ to simplify notation
so δL → L and δA → A and the model is assumed to be used around the operating
point)

L = MA+ w (2)

where w ∼ N (0, σ2
L). Since there is only one measurement, a reasonable way to proceed

is to solve the deterministic part of (2) with the measurement so Â = L/M. The variance
of the estimate will then be var(Â) = var(w/M) = σ2

L/M2.
This estimator is actually the maximum likelihood estimator (MLE). To see this, introduce

the log-likelihood function L, which is the logarithm of the probability distribution function
evaluated with the actual measurement. The log-likelihood is a function of the data and
the unknown parameter L = L (x;A). The maximum likelihood estimator chooses the
value of A that maximizes the log-likelihood Â = max[L (x;A)]A. With scalar normal data,
the log-likelihood is

L = −(L−MA)2

2σ2
L

+ constant (3)
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Notice this reaches its maximum value when the first term is zero. Solving L −MA = 0,
the estimator is ÂMLE = L/M, which is the solution of the non-random part of the model
with the measurement.

The error in the estimate will be proportional to the radius of curvature ρ of L at the
maximum value. This is the negative of the second derivative evaluated at A = Â

radius of curvature = ρ = −
[
∂2L
∂A2

]
Â

Differentiating (3), the radius of curvature is

ρ =
M2

σ2
L

Notice that we can express the variance of the estimate as the inverse of the second
derivative

var
(
Â
)

=
σ2
L

M2

= 1
ρ

= − 1[
∂2L
∂A2

]
Â

In general, the second derivative may depend on the data, so we would use the expected
value of the second derivative

var
(
Â
)
= − 1〈[

∂2L
∂A2

]
Â

〉
Appendix 3A of Kay[2] proves that this is the minimum variance for any unbiased estimator,
called the Cramèr-Rao lower bound (CRLB).

The MLE is the value of the parameter where the derivative is equal to zero. The first
derivative of L is

∂L
∂A = M

σ2
L
(L−MA)

= M2

σ2
L

(
L
M −A

)
= I (g (L)−A)

(4)

With this factoring, the maximum likelihood estimate is ÂMLE = g (L) = L/M. Notice that
the variance of the estimate, from my discussion in the first paragraph of this section is
var

(
Â
)
=

σ2
L

M2 = 1/I . The proof in Appendix 3A of Kay[2] shows that this is a general
result. If we can factor the derivative as in (4), then the inverse of the leading factor, I , is
the CRLB.

Maximum likelihood estimator with vector multinormal data, constant
covariance

We can parallel this derivation with vector data by following the two-step approach used in
my previous post to derive the optimal detector: first solve the problem assuming “white”
equal variance data and then use the whitening transform to convert the general case to
the simplified one. If the covariance of the measured data is CL = σ2

LI, where I is the
identity matrix with ones on its diagonal, then the log-likelihood function is

L (L;A) =
1

2σ2
L

(L−MA)T (L−MA) + constant
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Expanding the product and gathering common terms utilizing the fact that L is a scalar so
we can take the transpose of any term without affecting the result

L (L;A) =
1

2σ2
L

[
LTL− 2LTMA−AT

(
MTM

)
A
]
+ constant

I will use the general formulas for matrix derivatives from my post,

∂bTx

∂x
=

∂xTb

∂x
= b

∂xTBx
∂x =

(
B+BT

)
x

= 2Bx if B symmetric
(5)

where b is a constant vector and B is a constant matrix and x is the vector of variables.
The derivative of L is (since

(
MTM

)
is symmetric)

∂L
∂A = 1

σ2
L

[
MTL−

(
MTM

)
A
]

=

(
MTM

)
σ2
L

[(
MTM

)−1
MTL−A

] (6)

The MLE is derived by setting the derivative (6) equal to zero so

ÂMLE =
(
MTM

)−1
MTL

and by analogy to the scalar case, the covariance of the estimate is the inverse of the
leading factor of (6)

cov
(
ÂMLE

)
= σ2

L

(
MTM

)−1

We can use these results for the case with a general covariance matrix CL by using the
whitening transform V defined so that C−1

L = VTV and CL = V−1V−T. Transforming
the measurement data so L′ = VL, the transformed linear model is

L′ = V (MA+w)
= M′A+w′

where M′ = VM and w′ = Vw. The covariance of w′is the identity matrix

cov (w′) =
〈
(Vw) (Vw)T

〉
= VCLV

T

= VV−1V−TVT

= I

so we can apply the white case results. Using the MLE from the white case and noting
that M′TM′ = MTVTVM = MTC−1

L M

ÂMLE =
(
MTC−1

L M
)−1

MTVTVL

=
(
MTC−1

L M
)−1

MTC−1
L L

(7)

Similarly, the covariance of the estimate is

cov
(
ÂMLE

)
=

(
M′TM′

)−1

=
(
MTC−1

L M
)−1 (8)
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Simple vector MLE example

We can see how these formulas work an example. Suppose we have two-spectrum data
such as from two x-ray tube voltages or two bin PHA. In this case the M matrix is

M =

[
M11 M12

M21 M22

]

and the covariance is

CL =

[
1/N1 0
0 1/N2

]
where N1 and N2 are the mean values of the photon numbers of the measurements.
Substituting these into (7), the MLE is

ÂMLE =
1

(M11M22 −M12M21)

[
M22L1 −M12L2

−M21L1 +M11L2

]
(9)

Notice the MLE is just the solution of the linear system MA = L. For example, we can
write the solution for Â1 using determinants and cofactors as in elementary algebra

Â1 =

∣∣∣∣∣ L1 M12

L2 M22

∣∣∣∣∣
|M|

=
M22L1 −M12L2

|M|

where | | is the determinant.
The covariance of the estimate is

cov
(
ÂMLE

)
=

∣∣∣∣∣∣
M2

22
N1

+
M2

12
N2

−
(
M21M22

N1
+ M11M12

N2

)
−

(
M21M22

N1
+ M11M12

N2

)
M2

21
N1

+
M2

11
N2

∣∣∣∣∣∣
|M|2

(10)

These results parallel those I derived in my dissertation and my 1976 paper[3]. The
covariance (10) is Eqs. 14 and 15 of my paper and the MLE (9) with two spectra is just the
solution of the deterministic equations with the measured data as I showed in my paper.

The matrix multiplications can get tedious so in my next post I will describe how to use
the free symbolic mathematics program Maxima to carry them out. I am including Maxima
scripts for some of the derivations in the code for this post.

CRLB with general multinormal data

We know that with x-ray data the covariance is not constant. Indeed, the variance in-
creases strongly with object thickness. So an immediate question is: What is the differ-
ence between the CRLB computed using constant covariance and the general result that
takes the change into account? To answer this, I did a simulation that computes the error
by using the constant covariance formula as a function of object thickness.

Appendix 3.C of Kay[2] derives the inverse of the CRLB I(A) for the general multinormal
case where the covariance can change. The results are (translated to my notation)

[I(A)]ij =

[
∂L(A)

∂Ai

]T
C−1(A)

[
∂L(A)

∂Aj

]
+

1

2
tr

[
C−1(A)

∂C

∂Ai
C−1(A)

∂C

∂Aj

]
(11)
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Recall from my derivation of the linearized model that ∂L(A)
∂A = M, so this is

[I(A)]ij = M(:, i)TC−1M (:, j) +
1

2
tr

[
C−1(A)

∂C

∂Ai
C−1(A)

∂C

∂Aj

]

where the notation M(:, k) is the k′th column of M. Comparing this with Eq. 8, the
first term is the constant covariance CRLB and the second term measures the effect of
changes in C as a function of A.

We can see that the constant covariance term in (11) will be much larger than the
second term as follows. With Poisson data, the variance of the logarithm is the inverse
of the expected value and, since the PHA counts are independent, the covariance and its
inverse are

C =

 1/N1

. . .
1/Nnbins

 , C−1 =

 N1

. . .
Nnbins

 ,

where Nk is the number of counts in bin k and nbins is the number of bins. The first term in
(11) is therefore proportional to the number of photons while the second term is essentially
the product of C and its inverse and is approximately constant. Since in medical imaging
the number of counts is usually large, we would expect that the constant covariance CRLB
is much larger than the derivative of the covariance term.

This is shown by the code for this post. The code has Matlab functions to compute the
general and constant covariance CRLB for points along a diagonal line through A-space.
In order to compute the general CRLB, we need to have formulas for the derivatives of
the covariance in (11). Since C is diagonal, we only need the derivative of each diagonal
element

∂

∂Ai

(
1

Nk

)
= − 1

N2
k

∂Nk

∂Ai
= −Mki

Nk
, (12)

which can be computed at each point from M and Nk.
The path through A-space is shown in the left panel of Fig. 1. The right panel shows

the norm of the difference of the constant covariance and general CRLB matrices divided
by the norm of the general CRLB as a function of distance along the line.

Conclusions

Fig. 1 shows that the errors in the CRLB using the constant covariance formula Eq. 8
are less than a few percent although, as expected, they become larger for thicker objects
where the number of transmitted photons is smaller. We can therefore use the simpler
formula Eq. 8 to compute the CRLB of the A-space data without incurring a significant
error. Substituting in the formula from my last post, the overall SNR2 is

SNR2 = δATC−1
A δA = δATMTC−1

L MδA

In the next posts, I will discuss computing the covariance of the measurements for different
types of detectors. These require the derivation of the effective attenuation coefficient
matrix M and the covariance of the log data CL. Both of these depend on the properties of
the detector and the energy resolution of the measurements. The derivations sometimes
involve complex matrix computations, so I double-check them using Maxima and also
Monte Carlo simulations.
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Figure 1: Errors with constant covariance CRLB vs object thickness. The object A-vectors
lie along a diagonal line through A-space as shown in the left panel. The dif-
ference between the general and the constant covariance CRLB divided by the
general formula is shown in the right panel.
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