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Detection theory with A-space data

In my last posts I discussed the background for applying statistical detection theory to x-ray
imaging. In this post, I will show how to incorporate the A-space description into the model.
This will lead me to discuss the effect of the basis set functions on the approximation or
representation error of the attenuation coefficients of body materials. I will show that there
are optimal functions that minimize the error but that other basis functions, such as the
attenuation coefficient functions of different materials, do not lead to substantially larger
errors. Once the A-space description is in the model, we can derive a signal to noise ratio
that is directly comparable to the Tapiovaara-Wagner SNR[1] and we can compare the
SNR with limited energy resolution to the ideal with complete spectral information.

Detection theory with the two function basis set

Tapiovaara and Wagner analyzed detecting an object based on measurements of the
transmitted spectra as shown in Fig. 1. The object consists of a feature with attenuation
coefficient µf (E) and thickness tf and a background material µb(E) with thickness tb. We
can introduce the A-space description into the analysis by using µf (E) and µb(E) as the
basis functions. Early on in the development of the A-space approach I realized that the
attenuation coefficients of any two distinct materials can be used as the basis set (see
Sec. 4.5 of my dissertation and my 1979 paper[2]). This is easy to see because the A-
space approach converts the attenuation coefficient to a two-dimensional vector and, in a
2D space, any two non-collinear vectors can be used as a basis. However, µ-space is not
exactly two dimensional and any two function basis set will have a fit error to the actual
data. The error depends on the basis functions so I will discuss this further in the next
section.

With the µf (E) and µb(E) basis set, the a vectors for the feature and background ma-
terials are simply

af =

[

1
0

]

, ab =

[

0
1

]

.

The A-vector in the background region is Ab = tbab while in the feature region it is
Af = (tb − tf )ab + tfaf . We can apply the statistical detection theory model described
in my last post by assuming that the A-vector data are described by a multinormal dis-
tribution with expected values under two hypotheses: 〈AH0〉 = Ab and 〈AH1〉 = Af and
a covariance CA. From my last post, the performance will depend only on the signal to
noise ratio

SNR2 = δAT
C

−1

A
δA (1)

where δA = 〈AH1〉 − 〈AH0〉.

Material attenuation vs. optimal basis functions

The physical material basis set is often used in implementations because the A-vectors
for a calibration phantom are the thicknesses of the two materials, which can be mea-
sured easily and precisely. For calibration, we usually pick materials with atomic numbers
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Figure 1: The Tapiovaara-Wagner imaging task.

spanning those found in the object such as aluminum and acrylic plastic for biological
materials. In the detection theory analysis, however, we may have materials with similar
composition. Therefore, we need to study how the approximation error depends on the
basis functions.

A first question is whether there is an ideal set of functions. The answer is yes and they
are provided by the singular value decomposition (SVD). Recall from my discussion that
the SVD expands any matrix B as

B = UDV
T

where I have assumed that the matrix is real. The matrices U and V are unitary and D

is a diagonal matrix. In my previous post I described a theorem that gives the optimal
basis functions from the SVD. Suppose we arrange the columns and rows of the unitary
matrices U and V so that the values on the diagonal of D are in descending order and that
we set all the diagonal elements in D for rows greater than r + 1 equal to zero. That is let
Da = diag (σ1, σ2, . . . , σr, 0, . . . , 0). Then Theorem 6.7 of Stewart[3] shows that the matrix
Ba = UDaV

T is the best approximation of B with rank r. That is, the Frobenius norm of
the difference ‖B− Ba‖ is the minimum over all matrices of rank r. By this construction,
we are selecting the first r columns of U as the basis set so they are the optimal functions
and the norm ‖B− Ba‖ is the minimum approximation error.

The next question is how the use of the attenuation coefficient functions of materials
whose atomic numbers are close affects the approximation error. To answer this, I did a
simulation using the elements found in body materials. I computed a matrix with the atten-
uation coefficients of the 13 most common elements in body materials along the columns
at 100 energies from 20 to 150 keV along the rows. I fixed one of the basis functions
as the attenuation coefficient of hydrogen and then computed the norm of the difference
between the least squares fit and the actual data using each of the other elements as the
remaining basis function. I normalized the errors by dividing by the error with the optimal
basis functions from the SVD of the attenuation coefficient matrix.

The results are shown in Fig. 2. The left panel shows the optimal basis functions.
These are obviously not physical attenuation coefficients but are the mathematical optimal
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Figure 2: Approximation error with material basis functions versus atomic number spread
(right panel). The error is the norm of the difference of the values estimated with
a two function basis set and the actual values. The error is relatively constant
even if the difference in the materials’ atomic numbers is not large. The errors
are normalized by dividing by the error with the optimal set of basis functions,
which are the two eigenfunctions of the covariance with the largest eigenvalues.
These are plotted in the left panel.

functions. The right panel shows the normalized error as a function of the atomic number
of the second function. There are several aspects of these that are of interest. First,
as expected, all the normalized errors are greater than one so the first two columns of
the U are indeed optimal. However, the errors for elements from 15 to 19 are quite
close to the ideal value. The most important result of the simulation for the use of the
background/feature basis set is that the errors are not substantially different over the range
of elements. Interestingly the largest errors are at the end of the range but even for these
the errors are only about 2.5 times the optimal minimum.

Conclusions

My conclusion is that we can use the background/feature set in our analysis without sub-
stantially affecting the results. The next step is to derive the covariance of the A-vector
data CA in the equation for the SNR2 (1). This depends on the covariance of the loga-
rithm of the x-ray data L and the relationship will require us to use statistical estimation
theory as I will describe in my next post.

–Bob Alvarez
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