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Detection with multinormal data

In my previous post, I showed that multivariate normal is a good model for x-ray measure-
ments and in my last post I described the general properties of this distribution. In this
post, I will discuss statistical detection theory with the normal model. I will show that the
performance is characterized by a suitably defined signal to noise ratio. This will enable
me to close the loop to the main topic of this series of posts, which is to explain the re-
sults in my paper, “Near optimal energy selective x-ray imaging system performance with
simple detectors[1]”, which is available for free download here.

Section 3.3 of Kay[2] has an excellent discussion of classical statistical detection theory
and Sec. 2.6 of Van Trees[3] describes its use with normal distributed data. I recommend
that you study these references. Here, I will summarize and tie together their results. The
main result will be that the probability of detection for a specified false alarm rate depends
only on the signal to noise ratio (SNR) and the derivation of the SNR for vector data.

Binary decision making with mean-shifted data

Statistical detection theory is based on hypothesis testing. The simple binary hypothesis
testing approach that I will use assumes that the probability distribution functions under
both hypotheses are known. The problem is to decide between the hypotheses based on
the random measurement(s). In my discussion, I will focus on the multinormal distribution
with the same covariance under both hypotheses. With x-ray measurements, we know
that the variance depends on the number of photons, which varies strongly with object
thickness. This would seem to imply that the analysis is only applicable for thin features.
In a future post, I will show that this is not necessarily true but the thin feature case is
important since the objects significant for medical diagnosis like lung nodules or breast
tumors are many times small. The equal covariance case is also widely used since it
provides good insight to the factors affecting detection performance.

Suppose, we make just one measurement and the distributions PH0
and PH1

under the
two hypotheses have the same variance σ with means m0 and m1 as shown in Fig. 1.
To implement the detection algorithm, we divide the x-axis into two regions and decide
H0 if the measurement is in R0 and H1 in R1. Because of the random data, we cannot
eliminate errors. We can measure the performance by two parameters, the probability of
detection, PD = Prob (H1;H1) and the probability of false alarm, PFA = Prob (H1;H0),
where the notation Prob (Hi;Hj) means the probability of deciding Hi if Hj is true. Since
m0 is less than m1 for the case shown in Fig. 1, a reasonable decision rule is to choose
H0 if x is less than a threshold γ and H1 if it is larger. The equal case has zero probability
so it can be assigned to either case. This leads to the decision regions R0 and R1 shown
in the figure.

The Neyman-Pearson (NP) theorem

Given the data in Fig. 1, an immediate question is where to set the threshold. We can-
not simultaneously minimize PFA and maximize PD but we can fix PFA at some pre-
determined value α and maximize PD by using the Neyman-Pearson theorem
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Figure 1: Hypothesis testing with a single measurement

To maximize PD for a givenPFA = α, decide H1 if

R(x) =
p(x;H1)

p(x;H0)
> τ (1)

where the parameter τ is chosen so

PFA =

∫

{x;R(x)>τ}
p(x;H0)dx = α

Note that the theorem is applicable to vector as well as scalar data.

Applying the NP theorem to scalar data

The probability distribution functions (PDF’s) under the two hypotheses are

p(x;Hk) =
1√

2πσ2
exp

[

−1

2

(

x − mk

σ

)2
]

k = 1, 2 (2)

Taking the logarithm of the likelihood ratio R in (1), substituting the PDF’s (2) and changing
the variable to u = x − m0, the NP test is

L(u) = log R =
u2 − (u − δm)2

2σ2
> log τ

Expanding the left side and rearranging terms, the NP test is u > γ′ where

γ′ =
σ2 log τ

δm
+

δm

2
(3)



With these, we can compute the optimal probability of detection for a specified false
alarm rate. First, I will define some notation. Let F (x) be the cumulative distribution
function of the N (0, 1) random variable

F (x) =
1√
2π

∫ x

−∞
e−

t
2

2 dt

and Fc = 1 − F be its complement. Since u has an N (

0, σ2
)

distribution

PFA = Fc

(

γ′

σ

)

We can invert this since Fc is a monotonically decreasing function so γ′ = σF−1
c (PFA).

Since p (x;H1) ∼ N (

δm, σ2
)

, the probability of detection is

PD = Fc

(

γ′ − δm

σ

)

Substituting for γ′,

PD = Fc

(

F−1
c (PFA) − δm

σ

)

(4)

This shows that the probability of detection for a given false alarm probability depends
only on the signal to noise ratio (or its square)

SNR2 =
(〈x;H1〉 − 〈x;H0〉)2

variance (x;H0)
(5)

where 〈x;Hk〉 denotes the expected value of x with the p(x;Hk) distribution.
We can evaluate Eq. 4 using Matlab functions to evaluate Fc, andF−1

c . The Matlab
function normcdf computes F and Fc = 1 − normcdf . Also, the Matlab norminv function
computes F−1 and F

(

F−1 (x)
)

= x = 1 − Fc

(

F−1 (x)
)

so

Fc

(

F−1 (x)
)

= 1 − x
F−1 (x) = F−1

c (1 − x)

Setting t = 1 − x,
F−1

c (t) = norminv (1 − t)

Fig. 2 shows the probability of detection PD as a function of the SNR2 in decibels
(dB) for different values of the false alarm probability PFA. Note that as expected, PD

always increases as the signal to noise ratio increases. The code to reproduce this figure
is available here. This figure should be compared with Fig. 3.5 of Kay[2].

Binary decisions with vector data: the equal covariance cas e

With multivariate normal data and assuming equal covariance under the two hypotheses,
the probability distributions are (see my last post).

p(x;Hk) =
1

(2π)
n/2 |C|1/2

exp
[

−1/2 (x− mk)T
C

−1 (x − mk)
]

k = 1, 2

where C is the covariance and n is the dimension of the vector data. Substituting in the
definition of the likelihood ratio (1) and taking the logarithm of both sides, the log-likelihood
is

L (x) = −(x −m1)T
C

−1 (x− m1) − (x− m0)T C
−1 (x − m0)
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Figure 2: PD as a function of signal to noise ratio squared.

Expanding the products, gathering terms, and defining δm = m1 − m0

−2L (x) = δmT
C

−1
x + m

T

1 C
−1

m1 − m
T

0 C
−1

m0

The last two terms on the right hand side do not depend on the data and a multiplicative
factor does not not affect the results so the Neyman-Pearson test is

L (x) = δmT
C

−1
x > γ′ (6)

The log-likelihood L (x) is a linear combination of a multivariate normal random variable
so it also has normal distribution. It is a scalar so we can apply the results of the previous
section to see that the performance is determined by the SNR2 from Eq. 5

SNR2 =
(〈L;H1〉 − 〈L;H0〉)2

variance (L;H0)
(7)

From (6), the expected values are

〈L;Hk〉 = δmT
C

−1
mk (8)

so the numerator of (7) is

(〈L;H1〉 − 〈L;H0〉)2 =
(

δmT
C

−1δm
)2

(9)

Using the definition of variance

variance (L;H0) =
〈

(L (x) − 〈L;H0〉)T (L (x) − 〈L;H0〉)
〉

(10)

From the definition of L (6) and the expected value (8),

L (x) − 〈L;H0〉 = δmT
C

−1 (x −m0)

= (x− m0)T C
−1δm



where the last step follows because L is a scalar so it is equal to its transpose as is the
covariance because it is symmetric.

variance (L;H0) =
〈

δmT
C

−1 (x − m0) (x− m0)T C
−1δm

〉

= δmT
C

−1
CC

−1δm
= δmT

C
−1δm

(11)

Substituting (9) and (11) in (7), the vector SNR2 is

SNR2 = δmT
C

−1δm (12)

Example: “white” data

Data with independent, equal variance provide good insight and are also important in
practice since we can use the whitening matrix, Φw discussed in my last post, to transform
any multinormal to this case. In a future post, I will describe how we can use whitening
with x-ray spectral data.

For whitened data, the covariance matrix is C = σ2
I and its inverse is C

−1 = 1/σ2I.
Substituting in (12), the signal to noise ratio is

SNR2
W =

|δm|2
σ2

This is the distance between the means squared divided by the variance. From (6), the
NP test is

L (x) =
1

σ2
δmT

x > γ′

This is the dot product of the data with the mean difference vector δm.

Conclusion

I have now provided the statistical detection theory framework that I will use to analyze
the Tapiovaara-Wagner imaging task[4] for x-ray data with spectral information. We can
use this framework to introduce the basis set expansion of the attenuation coefficient as
shown in my paper[1]. This will allow us to compare the performance of systems with
limited energy resolution to the ideal case with full spectral information.

Bob Alvarez
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