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Multivariate normal random variables

In my last post, I showed that the multivariate normal, abbreviated multinormal, is a good
model for the noise w in a linearized x-ray system model. In this post, I will discuss some
of the properties of the multinormal distribution. I will show a rationale for its expression
using vectors and matrices. This will lead me to discuss matrix calculus. I will describe
diagonalizing and whitening transformations and derive the moment generating functions
of the uninormal and multinormal to show that linear combinations of multinormals are
also multinormal. This post will provide math background for my discussions of detection
and maximum likelihood estimation with the linearized x-ray model.

Matrix expression for the multinormal distribution

Matrices and vectors are natural ways to arrange and keep track of multivariate data so
they are widely used in statistical signal processing but most references simply state the
matrix expression for the multinormal distribution. I will give a rationale for it and use it to
derive some basic properties of the distribution. For this, I start with the univariate normal
(uninormal) distribution discussed in elementary probability books (see for example Sec.
5.4 of Ross[1])
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where m is the expected value and σ2 is the variance. Suppose we have a set of n
independent uninormal random variables, their joint density function is
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We can summarize the {xk} as the components of a vector x, the expected values as a
vector m, and the variances as the diagonal covariance matrix

C =







σ2
1 0

· · ·
0 σ2

n






.

The matrix is diagonal since the covariance of independent random variables is zero. We
notice that σ1σ2 . . . σn is the square root of the determinant of the covariance |C|1/2, and
that we can express the exponent as the quadratic form (x − m)T C−1 (x −m). This
leads to the final expression

f(x) =
1

(2π)
n/2 |C|1/2

exp
[

−1/2 (x− m)T C−1 (x− m)
]

. (3)

Eq. 3 was derived for independent variables but I will now show that it makes sense to
use it for the general multinormal distribution when C is any symmetric, positive definite
matrix and m is any vector of real numbers. First, since the exponential function is always
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non-negative, and the leading factor in (3) is greater 0, it is clear that φ(x) ≥ 0. Next, I
will show that

∫

φ(x)dx = 1 by taking a detour through matrix calculus and the principal
components of C. The principal components give us an orthogonal transformation that
diagonalizes the matrix. We can also use them to “whiten” the covariance. Applying the
transformation allows us to transform

∫

φ(x)dx into a product of integrals of uninormals,
each of which is equal to one. Finally, I will derive the moment generating function of the
multinormal and use it to show that linear combinations of multinormals are also normal.

Matrix calculus

I will introduce and derive some results from matrix calculus that will be used here and in
other posts. I also list some matrix manipulation basics in Eq. 20 at the end of this post.
For other results, you can refer to The Matrix Cookbook, which is available free online,
and has a huge list of formulas. The book by Harville[2] proves provides proofs for many
of the formulas.

The derivative of a matrix whose elements are functions of a scalar is simply the matrix
of the derivatives

[

dA

dt

]

jk
=

dAjk

dt
(4)

Similarly the integral of a matrix is the integrals of its components
[
∫

A(t)dt

]

jk
=

∫

Ajk(t)dt (5)

The matrix formulas are applicable to a vector, which I take to be a column matrix.
Suppose we have a scalar function of a matrix g (x). An example is the atmospheric

temperature as a function of the 3D position. The derivative is a matrix (actually a vector)
and is the familiar gradient with components

[

∂g

∂x

]

k
= [∇g]k =

∂g

∂xk
(6)

From this we can derive the derivative of the dot product with respect to one of the vectors.
Since

g (x) = aTx = xTa = a1x1 + . . . + anxn
[

∂g

∂x

]

k
= ak

so
∂aTx

∂x
=

∂xTa

∂x
= a (7)

I will also use the derivative of a quadratic form g(x) = xTAx. This can be derived by
writing out the products, see Sec. 15.3 of Harville[2].

∂xTAx
∂x

=
(

A + AT
)

x

= 2Ax A symmetric
(8)
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Principal components of the covariance

The principal components expansion of the covariance can be derived by noticing that the
exponent of (3) defines a family of hyper-ellipsoids centered on m. Translating the origin
to the mean value so z = x− m, the exponent is proportional to

zTC−1z = c (9)

which defines a hyperellipsoid for each positive real number c. The first principal compo-
nent is the line passing through m with the longest distance to any point x on the surface
of the ellipsoid (see the discussion in Ch. 3 of Morrison[3]). We can find this line by
maximizing the distance (squared) zTz subject to (9) by using Lagrange multipliers. The
maximum is found by setting the derivative of the distance after adding a term equal to
zero.

g (z) = zTz − λ
[

zTC−1z − c
]

Applying (7), the derivative of the first term is

∂zTz

∂z
= 2z

Using (8) for the derivative of a quadratic form and the fact that C and therefore its inverse
is symmetric

∂g

∂z
= 2

(

z− λC−1z
)

Setting this equation equal to zero, we see that z is an eigenvector of the inverse of
covariance matrix.

C−1z =
1

λ
z (10)

Since C is invertible z is also an eigenvector of the covariance matrix, Cz =λz.
The derivative will be zero for any eigenvector zk but only one eigenvector corresponds

to the maximum difference. Premultiplying (10) by zT
k ,

zT
k C−1zk =

1

λk
zT
k zk = c

we see that the distance is zT
k zk = λkc. Therefore we can maximize the distance from the

centroid by choosing the eigenvector corresponding to the largest eigenvalue. This gives
us the principal axis of the ellipsoid. The other eigenvectors correspond to the remaining
principal components with smaller distances. The other axes can be listed in order of
decreasing eigenvalues.

Diagonalizing transform

We can construct a coordinate transformation matrix Φ that diagonalizes the covariance
matrix from the eigenvectors. First, we normalize the eigenvectors to have unit length by
dividing by their length i.e. their norm. We can always do this because they are guaranteed
to have non-zero norm. We then form a matrix with the eigenvectors as columns. To avoid
confusion, I will denote the eigenvectors as φk

Φ =
[

φ1

... φn

]



With this definition

CΦ = Φ







λ1 0
. . .

0 λn






= ΦD (11)

We can show that if φj and φk are two eigenvectors with different eigenvalues λj and
λk, then they are orthogonal. The eigen equations for these components are

Cφj =λjφj

Cφk =λkφk
(12)

Premultiplying the top equation in (12) by φT
k and taking the transpose of the bottom

equation and postmultiplying by φj

φT
k Cφj =λjφ

T
k φj

φT
k CTφj=λkφ

T
k φj

Since C is symmetric, the left hand sides of the equations are equal, so subtracting them

(λk − λk) φT
k φj = 0

The eigenvalues are different so φT
k φj = 0 and the eigenvectors corresponding to different

eigenvalues are orthogonal. This implies that the eigenvector matrix Φ is orthogonal so
its transpose is equal to its inverse, ΦT = Φ−1.

The covariance of the transformed coordinates z′ = ΦTz is

C′ =
〈

z′z′T
〉

=
〈

ΦTzzTΦ
〉

= ΦTCΦ
= ΦTΦD
= D

(13)

Whitening transform

The covariance of the Φ transformed coordinates is diagonal but the variances are differ-
ent. In some cases, we want them to be equal i.e. whitened. Studying Eq. 13, the whiten-
ing transform is Φw = ΦD−1/2. Since D is diagonal, D−1/2 = diagonal [1/

√
λ1, . . . , 1/

√
λn] .

The covariance of the transformed coordinates z′ = ΦT
wz is

C′
w =

〈

z′z′T
〉

=
〈

D−1/2ΦTzzTΦD−1/2
〉

= D−1/2ΦTCΦD−1/2

= D−1/2ΦTΦDD−1/2

= D−1/2D1/2

= I

We can use the whitening transform to define a useful factorization of the covariance.
Defining V = ΦT

w

VTV = ΦWΦT
w

= ΦD−1/2D−1/2ΦT

= Φ (ΦD)−1 the transpose of an orthogonal is also the inverse
= Φ (CΦ)−1

= ΦΦ−1C−1

= C−1



Proof that
∫

f(x)dx = 1 for multinormal

In this section, I will show that the density function for the general multinormal Eq. 3) has
the correct normalizing constant. For this, I need to compute the integral. Defining an
unnormalized density function as

d (x) = exp
[

−1/2 (x −m)T C−1 (x− m)
]

we need to compute
∫

d (x) dx. Translating the origin to m so z = x− m, and transforming
by Φ so z = Φu, the exponent in the multinormal distribution is

(x − m)T C−1 (x −m) = zTC−1z = (Φu)T C−1 (Φu) (14)

Premultiplying (11) by Φ−1, C = ΦDΦ−1. Therefore C−1 = ΦD−1Φ−1. Substituting in
(14),

zTC−1z = uTΦTΦD−1Φ−1Φu = uTD−1u

The last step follows because the transpose of an orthogonal matrix is its inverse, ΦT = Φ−1.
Since D is diagonal

D−1 =







1/λ1 0
. . .

0 1/λn







The exponent is then

uTD−1u =
n

∑

k=1

u2
k

λk

and
∫

d (x) dx =

∫

exp

[

−1

2

n
∑

k=1

u2
k

λk

]

|Φ| du

For an orthogonal transformation the determinant is one,|Φ| = 1 and we can write the
transformed integrand as

exp

[

−1

2

n
∑

k=1

u2
k

λk

]

= g1(u1)g2(u2) . . . gn(un)

where

gk(uk) = exp

[

−1

2

u2
k

λk

]

We know from the uninormal distribution that
∫

exp

[

−1
2

u2

k
λk

]

duk =
√

2πλk. Therefore, the

integral of d(x) is the product of the univariate integrals and
∫

d(x)dx = (2π)
n/2 √λ1λ2 . . . λn.

The product of the eigenvalues is the determinant of the D matrix defined in (11) and since
C = ΦDΦ−1and |Φ| is orthogonal |C| = |D|. The integral is therefore

∫

d (x) dx = (2π)
n/2 |C|1/2

so the proposed multinormal density (3) has the correct normalizing constant.



Linear combinations of multinormal random variables–mome nt generating
functions

An important property of multinormal variables is that linear combinations are also normal.
I will prove this by deriving the moment generating function, which is also useful for other
purposes. Let’s start with the moment generating function of the “standard” uninormal
random variable N (0, 1) with 0 mean and variance equal to 1. By definition this is

MN (t) =
〈

etX
〉

= 1√
2π

∫

exp (tx) exp (−x2/2) dx

= 1√
2π

∫

exp
(

−x2−2tx+t2

2 + t2

2

)

dx

= 1√
2π

et2/2
∫

exp
(

− (x−t)2

2

)

dx

= et2/2

(15)

The general uninormal random variable N (m,σ2) is a linear combination of a constant
and the “standard” uninormal Y = m + σN . Its moment generating function is

MY (t) =
〈

et(m+σN )
〉

= emt
〈

eσtN
〉

= emtMN (σt)

= exp
(

mt + σ2tt

2

)

(16)

Now, let’s consider the vector case. The joint moment generating function is defined
to be MX (t) =

〈

exp
(

tTX
)〉

, where t and X are now vectors of length n. If N (0, 1) is
the “standard” multinormal random vector with independent components, 0 mean and all
variances equal to 1

MN (t) = 〈exp (t1N1 + t2N2 + . . . tnNn)〉
=

〈

et1N1

〉

· · ·
〈

etnNn

〉

components independent

= exp
[

t2
1

2 + . . . t2n
2

]

use Eq. 15

= exp
(

1
2t

Tt
)

(17)

We can use this to derive the moment generating function of the general multinormal
distribution. To do this, I will derive the formula for the linear combination of a general
multivariate random vector, not necessarily normal. Let Y = A + BTX where X is an
n × 1 random vector, A is an m × 1 constant vector and B is an n × m constant matrix.
The moment generating function of Y is

MY (t) =
〈

exp
(

tTA + tTBTX
)〉

= exp
(

tTA
) 〈

exp
(

tTBTX
)〉

= exp
(

tTA
)

MX (Bt)

(18)

To derive the moment generating function of a general multinormal let Y = m + STN (0,1)
where N (0,1) is the standard multinormal (i.e. with zero mean and unit diagonal covari-
ance). Applying the general result for a linear combination (18)

MY (t) = exp
(

tTm
)

MN (St)

= exp
[

tTm + 1
2t

TSTSt
]

= exp
[

tTm + 1
2t

TCt
]



where the covariance C = STS.
To show that linear combinations of multinormals are also multinormal, I will use the mo-

ment generating function of a linear combination of general multinormal random variable,
Ynormal = A + BTN

MYnormal
(t) = exp

(

tTA
)

MN (Bt) apply (18)

= exp
(

tTA
)

exp
(

tTBm + 1
2
tTBTCBt

)

apply (?? )

= exp
(

tT (A + Bm) + 1
2
tTBCBTt

)

(19)

This is the moment generating function of a multinormal random vector with expected
value A + Bm and covariance BCBT.

With this general results, we can also show that the components of a multinormal ran-

dom vector are uninormal. In (19), let A = 0 and B =
[

1 0 · · · 0
]T

, then MY (t) =

exp(m1 + 1
2C

11
t21), which is uninormal with mean m1 and variance C11. This result applies

to all the components.

Summary

The material discussed in this post will be used during my discussion of statistical de-
tection and estimation theory applied to x-ray imaging. Eq. 20 summarizes basic matrix
manipulations

(A + B)T = AT + BT

(ABC)T = CT BT AT

(ABC)−1 = C−1B−1A−1 A, B, C square, invertible
(

AT

)−1
=

(

A−1
)T

(20)

Eq. 21 shows some basic matrix calculus formulas

∂aTx
∂x

= ∂xTa
∂x

= a a,b equal length column vectors
∂xTAx

∂x
=

(

A + AT
)

x A matrix, x vector
∂xTAx

∂x
= 2Ax A symmetric

(21)

Eq. 22 has some formulas for normal distributions

N (0, 1;x) = 1√
2πσ

exp
[

−1
2

(

x−m
σ

)2
]

mean = m, variance = σ2 univariate normal

exp
(

mt + v2tt

2

)

univariate moment generating function

N (m, C;x) = 1

(2π)
n/2|C|1/2

exp
[

−1/2 (x − m)T C−1 (x −m)
]

mean = m, covariance = C multivariate

exp
[

tTm + 1
2t

TCt
]

multivariate normal moment generating function
(22)

Eq. 23 lists the diagonalizing and whitening transforms

Cφk =λkφk eigenvectors of covariance
CΦ = ΦD matrix of eigenvectors

D diagonal matrix of eigenvalues
z′ = ΦTz diagonalizing transform

Φw = ΦD−1/2, zwhite = ΦT
wz whitening transform

V = ΦT
w whitening factor

C−1 = V TV whitening factorization

(23)
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