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Normal probability models for x-ray measurements

In my last post, I described a three part model used in statistical signal processing: (1) an
information source produces outputs described by a finite dimensional vector, (2) a proba-
bilistic mapping between the source outputs and the measured data, and (3) a receiver or
processor that computes an estimate of the source output or makes a decision about the
source based on the data. I showed that in x-ray imaging the information is summarized by
the A vector whose components are the line integrals of the coefficients in the expansion
of the x-ray attenuation coefficient. The basis set coefficients a(r) depend on the material
at points r within the object and the line integrals Aj =

∫
Laj(r)dr are computed along a

line L from the x-ray source to the detector. I then showed the rationale for a linearized
model of the probabilistic mapping from A to the logarithm of the detector data L

δLwith_noise = MδA+w (1)

In this post, I will try to convince you that the multivariate normal is a good model for
the noise w. This will lead me to discuss tests for normality including probability plots
and statistical tests based on them such as the Shapiro-Wilk test[1] (available online) for
univariate data and Royston’s test[2] for multivariate data.

Normal probability plot

The most widely used test for normality is the normal probability plot. Although it is easy
to create them with statistical software, the theory behind them is hard to find. For the
mathematical rigor that I like, i.e. low, the theory is quite simple but a google search on the
theory rapidly leads us into math thickets like distributions of order statistics. The method
is based on two observations. The first is that the (normalized) index of the sorted data
gives the cumulative distribution function (CDF) of the dataset. Some thought shows why
this is reasonable. For example, if the probability distribution function (PDF) is peaked,
then there will be a lot of samples near the peak and a plot of the normalized index versus
the sorted values will show a rapid increase near the peak of the PDF. Fig. 1 (a) shows
an example with normal distributed data. The black dots are samples of a normal random
variable and the red line is the theoretical CDF. Notice the close agreement. The code to
produce Part (a) of the figure is shown in the box.

%% compare normal ized index sor ted data to cumulat ive d i s t r i b u t i o n f u n c t i o n
npnts = 1000;
ave = 10;
dev = 5;
x = sor t ( dev∗randn ( npnts , 1 ) + ave ) ;
prob = ( ( 1 : npnts ) − 0 . 5 ) / npnts ;
h = p lo t ( x , prob , ’ . k ’ ) ;
hold on , p lo t ( x , normcdf ( x , ave , dev ) , ’−r ’ ) , hold o f f

The only thing tricky about this code is the magic −0.5 in the computation of the nor-
malized probability. The rationale is based on formulas for the estimates of the means of

http://www.aprendtech.com
http://www.aprendtech.com/wordpress
http://aprendtech.com/wordpress/?p=266
http://www.aprendtech.com//blog/P24Probmodels/P24Probmodels.pdf
http://www.aprendtech.com//blog/P24Probmodels/P24Probmodels.zip
http://aprendtech.com/wordpress/?p=252
https://148.211.122.2/moodle/file.php/1/Lecturas/shapiro1965.pdf


−10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

(a)

Cum. Distrib.

−10 0 10 20 30
−4

−2

0

2

4

av
e=

10
.1

→

std dev = 5.1

(b)

normal plot

Figure 1: Example of normal probability plot. Part (a) is a comparison of the normalized
index of the sorted data to the CDF (see the code in the first box). The black
dots are samples of a normal random variable and the red line is the theoretical
CDF. In Part (b), the y axis is transformed by the inverse of the normal CDF.
Notice that the data now fall close to a straight line.

order statistics usually attributed to a 1958 book by Gunnar Blom[3]. Since the correction
is small for my datasets, I did not pursue it further.

prob = ( ( 1 : npnts ) − 0 . 5 ) / npnts ;

Based on this observation, we can compare the empirical CDF to the theoretical CDF
as in Fig. 1. This is difficult because the curve is not linear. So our second observation is
that if we distort the y-axis by transforming it by the inverse of the CDF of a distribution,
and if that is the actual distribution of the data, the result will be a straight line. Otherwise
the transformed normalized index will not be on a straight line. We can easily see this
with normal random variables. If Φ is the CDF of a normal random variable with mean 0
and variance 1, then Φ(x−ave

σ
) is the CDF with mean ave and variance σ2. If our data are

normally distributed, then the distorted normalized index versus the sorted data will be a
straight line

y = Φ−1(prob) =
x− ave

σ
. (2)

This is done in the code to produce the Part (b) of Fig. 1, which is shown below. Eq. 2
shows that the slope of the line is 1/σ and it passes through zero at x = ave. I fit a straight
line to the random data. I computed these two quantities from the line zero-crossing and
slope and the results are shown in the Figure. There are random errors but they are
close to the actual values. In the code, recall my fondness for using complex quantities to
represent 2D vectors. The Matlab plot function handles complex numbers appropriately
and my BestFitLine function expects a complex vector as input.

z = x ( : ) + 1 i ∗norminv ( prob ( : ) ) ;
h = p lo t ( z , ’ . k ’ ) ;

% f i t l i n e to data and use i t to compute the ave and get s lope
L = Bes tF i tL i ne ( z ) ;
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Figure 2: Normal probability plots for Poisson data with mean values 5, 20, and 100.

Fig. 2 shows normal probability plot for Poisson data with mean values 5, 20, and 100.
As expected, there are larger deviations from a straight line for smaller mean values.

Statistical tests for univariate normality

The Shapiro-Wilk[1] test is probably the most widely used to test for univariate normality.
The test quantifies the deviation from a straight line normal probability plot criterion. it uses
the second observation above that the slope of the best fit line can be used to compute the
variance. From these, Shapiro and Wilk defined a W statistic equal to the ratio of variance
from the slope of the line to the usual sample variance (times n− 1), S2 =

∑
(xk − x̄)2.

W =
σ̂2

normal plot

S2
(3)

They then showed that the W statistic has some useful properties. For normally distributed
data the statistic is

1. scale and origin invariant
2. depends only on sample size
3. is independent of S2 and ȳ
4. Less than or equal to 1

From these, they derived some properties of the distribution of W and defined a statistical
hypothesis test. The original test was limited to samples less than 20 but Royston[4] ex-
tended the test for up to 2000 samples. His algorithm is used in the function ShapiroWilkNormalityTest
that I used in the calculations.

Tests for multivariate normality

With the “curse of dimensionality”, tests for multivariate data are more difficult than uni-
variate tests. In my calculations, I used the Matlab function roystest[5], which is based on
a test developed by Royston[2]. The test computes the Shapiro-Wilk W statistic for each
variable and then combines them to derive a statistic to test the multivariate distribution.



The roystest algorithm is also only applicable for samples up to about 2000. With larger
samples, basically all deviations from a straight line are statistically significant and almost
all datasets are categorized as not normal.

Normality tests versus mean number of photons

I used these statistical tests to study the conditions for using a normal approximation with
idealized data from x-ray detectors. The data were calculated assuming random Poisson
distributed total number of photons each with a random energy distributed as from an 80
kVp x-ray tube. I tested five different types of detectors:

1. a photon counter N

2. a total photon energy integrating detector Q

3. the logarithm of the photon counts log(N)

4. the logarithm of the total energy log(Q)

5. The logarithm of multivariate data that simultaneously measures the integrated en-
ergy Q and 2-bin PHA, log(N2Q).

Random data were simulated from the 80 kVp x-ray tube spectrum versus the expected
number of photons in the spectrum: 5, 20, and 200.

The code to generate the random data is shown below. For each trial, a Poisson dis-
tributed random number of photons ns(k) is computed. Then, ns(k) random photon en-
ergies distributed as the x-ray tube energy spectrum are generated using the inverse
transform method described in this post. From the photon_energies, we can compute the
number with energy less than the threshold, which is the first PHA bin count, and those
with larger energy, which is the second bin count. The integrated energy Q is the sum
of the photon energies. Finally, the code computes other statistics that are used in our
calculations.

% generate the number o f photons f o r each t r i a l
ns = po issrnd ( lambda , n t r i a l s , 1 ) ; %poissrnd i s matlab poisson random number generator
i f add1

ns ( ns==0) = 1;
end
dat = zeros ( n t r i a l s , 7 ) ; % N, N1,N2,Q, Ebar , Ebars ( 1 : 2 )
dat ( : , 1 ) = ns ;
fo r k =1: n t r i a l s

% compute random photon energies using inverse t rans fo rm method
photon_energies = specuminv ( c e i l ( rand (1 , ns ( k ) )∗ numel ( specuminv ) ) ) ;

% number o f counts i n each PHA bin
dat ( k , 2 ) = sum ( double ( photon_energies < th resho l d ) ) ;
dat ( k , 3 ) = ns ( k ) − dat ( k , 2 ) ;

% the t o t a l energy Q
dat ( k , 4 ) = sum ( photon_energies ) ;
. . . .

The results are shown in Table 1. The results use the usual statistical convention that a
’0’ output implies that the null hypothesis H0, i.e. that the data are normally distributed, is
true. Therefore a ’1’ indicates that the normal model is not applicable at the significance
level of the test, 0.01. A 1 was added to the random cases with zero counts. The software
to reproduce Table 1 is included with the code for this post.

Parenthetically, I calculated a value of the Shapiro-Wilk W parameter for these simula-
tions and got a slightly different value from the Shapiro-Wilk software, which contains the
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Table 1: Normality test results for different detectors vs. number of photons. A “1” indi-
cates non-normal distribution

number of photons N Q logN logQ logN2Q
5 1 0 1 0 1
20 0 0 0 0 1
200 0 0 0 0 0

Royston corrections for larger sample sizes. I did not explore this further but if anyone
knows the reason, I would be interested in it.

Conclusion

The results in Table 1 imply that a normal model is acceptable for expected counts greater
than 200. There are several caveats. First, the results of the normality tests depend on
the random data so they are themselves random. You will get different results when you
run the code. I chose the parameters so most of the time my conclusions were true but
there will be some runs with different conclusions.

The results are based on computer simulations of idealized models. We really need
to run the tests on experimental data. Two good studies are Wang et al.[6] and Whiting
et al.[7]. Wang et al. showed that, as expected, the data failed the Shapiro-Wilk test for
highly attenuating regions with low integrated current (mAs). However, in those cases they
stated that the normal was better than alternatives including Poisson:

... a significant quantity of sinogram data from the highly attenuating region
at very low mAs level (17 mAs) failed the normality test (i.e., their p-values are
less than 0.05). Strictly speaking, their PDFs can not be expressed as a Gaus-
sian normal functional. Therefore, a cost function of the Gaussian functional
for noise reduction and image reconstruction at such low mAs levels may not
be mathematically adequate, despite it is a better choice compared to others,
such as Poisson, Gamma, etc. [6]

These two studies were for conventional systems using energy integrating detectors. Pho-
tons counting detectors with PHA have many sources of noise not modeled in my simula-
tion and it would be interesting and useful to have experimental results. These could be
tested for normal distributions using the software included with this post.

In the code for this article, I include the functions for the ATLine object. You need to
create an object from these functions. This depends on your version of Matlab. In my
version (R2007b), I created a ’hidden’ directory ’@ATLine’ on the Matlab path with these
functions. Newer versions of matlab have different object models.

–Bob Alvarez
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