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SNR with energy information

In the next posts I will discuss some of the results in my recent paper “Near optimal energy
selective x-ray imaging system performance with simple detectors[1]”, which is available
for free download here. The paper discusses fundamental limits on the signal to noise
ratio of x-ray detectors with energy spectrum information. It also describes how we can
design practical systems with low energy resolution detectors whose performance gets
close to the optimal limit.

As shown in my previous posts, the energy spectrum changes as x-rays are transmitted
through an object and the changes depend on the properties of the object. An example
of the change in spectrum is shown in Fig. 1, which plots the normalized spectrum for
different object thicknesses. The increase in the average energy with thickness is called
beam hardening. A detector that does not measure the spectral changes is not extracting
all the available information. It will therefore have a poorer signal to noise ratio (SNR) than
one that does. In this post, I will show that there is a maximum SNR that can be achieved
by systems that measure the complete spectrum of the x-rays transmitted through the
object. This limit is extremely useful because it gives us an absolute scale to compare the
performance of real systems. I derive expressions for the SNR of photon counting and
energy integrating systems and show that they are less than the optimal SNR whenever
the incident spectrum has non-zero width. If the spectrum has zero width, then there is no
energy spectrum information available for the detector to extract and all the detector types
have the same SNR.

In addition to my paper, the discussion is based on the paper “SNR and DQE analysis
of broad spectrum x-ray imaging” by M. J. Tapiovaara and R. Wagner[2] and also papers
by Cahn et al.[3] and Giersch et al.[4].

Imaging task and SNR

We need a model for both the signal and the noise to define SNR . The definition of
the signal requires an imaging task, which I show in Fig. 2. The task is to detect a
feature embedded in a background from measurements of the transmitted photons in the
background nb(E) and the feature nf (E) region. The measurements are specified by
the photon number spectra so n(E)dE is the number of photons in the range from E to
E + dE. In this post, I will assume that we have perfect energy spectrum measurements
with an infinite number of PHA bins of infinitesimal width. I will also assume the deadtime
is zero so n(E)dE is a Poisson random variable and measurements in non-overlapping
energy regions are independent.

For this imaging task, the signal is the expected value of the difference of the integrated
measurements in the two regions Nf =

∫

nf (E)dE and Nb =
∫

nb(E)dE. Since the
expected value of a sum is the sum of the expected values

〈N〉 =
∫

〈n(E)dE〉 =
∫

n(E)dE

where the non-bold symbol is the expected value 〈n(E)〉 = n(E). Therefore the signal is

Signal =

∫

(nf (E)− nb(E)) dE.
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Figure 1: Change in spectrum vs. the object thickness.

Since we have complete spectrum information, we can weight the spectrum with a function
w(E) when we calculate the signal resulting in

Signal =

∫

(nf (E)− nb(E))w(E)dE.

With my idealized assumptions, the signals in non-overlapping energy intervals are
Poisson distributed and independent. Since the variance of a Poisson is equal to the
expected value, the signal variance is

V ariance =

∫

(nf (E) + nb(E))w2(E)dE

where I have used the fact that the variance of a weighted sum of independent random
variables is the sum of square of the coefficients times the variances of the variables. The
SNR squared is then

SNR2 =
[
∫

(nf (E)− nb(E))w(E)dE]2
∫

(nf (E) + nb(E))w2(E)dE
(1)

Optimal SNR

The numerator of Eq. 1 is an inner product integral, which is analogous to the ordinary
dot product of two vectors a · b. Since a · b = |a| |b| cos (θ), where θ is the angle between
the vectors, |a| = √

a · a, |b| =
√
b · b, and 0 ≤ cos2 (θ) ≤ 1, we can square both sides of

the equation to show

(a · b)2 = (a · a) (b · b) cos2 (θ) ≤ (a · a) (b · b) .

The equality is only when a and b are parallel, that is a = Cb, where C is a scalar. The
analogous relation for the inner product of functions is the Schwartz inequality

[
∫

fgdE

]2

≤
(
∫

f2dE

)(
∫

g2dE

)

(2)
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Figure 2: Imaging task for SNR computation.

Letting f = w(E)
√

nf (E) + nb(E) and g = (nf (E)− nb(E)) /
√

nf (E) + nb(E), then

fg = (nf (E)− nb(E))w(E) (3)

and
∫

f2dE =

∫

(nf (E) + nb(E))w2(E)dE (4)

∫

g2dE =

∫

(nf (E)− nb(E))2

nf (E) + nb(E)
dE (5)

Substituting (3), (4), and (5) in (2)

[
∫

(nf (E) − nb(E))w(E)dE

]2

≤
[
∫

(nf (E) + nb(E))w2(E)dE

]

[

∫

(nf (E)− nb(E))2

nf (E) + nb(E)
dE

]

Assuming the non-trivial case where the first term in brackets is not zero we can divide
through by it and comparing to Eq. 1 for SNR2,

SNR2 ≤
∫

(nf (E)− nb(E))2

nf (E) + nb(E)
dE. (6)

The optimal SNR can be achieved when f = Cg, where C is a constant. This can be
done by letting the weighting function equal

w(E) = C
nf (E)− nb(E)

nf (E) + nb(E)
(7)



Low contrast object approximation

We can get some insight into these equations by analyzing the low contrast feature case.
If the spectrum incident on the object is n0, then

nb = n0e
−µbtb

nf = n0e
−µb(tb−tf)−µf tf = nbe

−(µf−µb)tf

Letting δµ = µf − µb , with a low contrast feature, (δµ)tf ≪ 1. Then

nf − nb =
(

e−δµ tf − 1
)

nb ≈ −δµ tfnb. (8)

Also
nf + nb ≈ 2nb (9)

Substituting these in the equation for the SNR2, (1)

SNR2 ≈ t2f
[
∫

w(E)nb(E)δµ(E)dE]2

2
∫

w2(E)nb(E)dE
(10)

Photon counting and energy integrating SNR

We can use Eq. 10 to analyze three important cases: 1. a photon counting detector, 2. an
energy integrating detector, and 3. the optimal detector with complete energy spectrum
information. The photon counting detector counts all photons regardless of their energy,
so w(E) = 1. The total photons transmitted through the object is λ =

∫

nb(E)dE and
the normalized transmitted spectrum is n̂b = nb/λ. Using these, the SNR2 of the photon
counting detector in the low contrast approximation is

SNR2
photon counting =

λt2f
2

[
∫

n̂b(E)δµ(E)dE

]2

= λt2f 〈δµ〉2N /2 (11)

where 〈δµ〉N is the effective value of δµ in the transmitted photon number spectrum.
Next, we can analyze the energy integrating detector. This detector sums the energies

of the photons, so it weights photons according to their energy w(E) = E. Rewriting the
low contrast SNR Eq. 10 in terms of n̂b,

SNR2 = λt2f
[
∫

w(E)n̂b(E)δµ(E)dE]2

2
∫

w2(E)n̂b(E)dE
.

Substituting w(E) = E, we can write this equation in terms of the normalized energy
spectrum

q̂(E) =
En̂b(E)

∫

En̂b(E)dE
.

Noting that
∫

En̂b(E)dE = 〈E〉 is the effective energy and
∫

E2n̂b(E)dE =
〈

E2
〉

is the
effective energy squared, the SNR of the energy integrating detector is

SNR2
energy integrating = λt2f

[
∫

En̂b(E)δµ(E)dE]2

2
∫

E2(E)n̂b(E)dE
= λt2f

〈E〉2 〈δµ〉2Q
2 〈E2〉

Defining the excess variance

F =

〈

E2
〉

〈E〉2



SNR2
energy integrating = λt2f 〈δµ〉2Q /2F (12)

Comparing this with the SNR of the photon counting detector, Eq. 11, we can see that
the energy integrating SNR is smaller for two reasons. First, since the energy spectrum
q(E) = En(E), it has a larger effective energy than the photon number spectrum. Since
attenuation coefficients in the medical x-ray energy range decrease with energy, 〈δµ〉2Q <

〈δµ〉2N . Also, we can use the computational formula for the variance, var(X) =
〈

X2
〉

−
〈X〉2, to see that

〈

E2
〉

≥ 〈E〉2 since the variance is always non-negative. Therefore F ≥ 1.
The equal case occurs if the incident spectrum is zero width, that is we have no energy
information. So,

SNR2
photon counting ≥ SNR2

energy integrating.

Optimal SNR and weighting function for low contrast object

We can substitute the low contrast object equations for nf −nb (Eq. 8) and nf +nb (Eq. 9)
in the equation for the optimal SNR (6) with complete energy information (6) to show that

SNR2
optimal =

∫ (nf (E)−nb(E))
2

nf (E)+nb(E) dE

=
∫ [δµ tfnb]

2

2nb
dE

= λt2f
〈

δµ2
〉

N
/2

By the same argument I used with F ,
〈

δµ2
〉

N
≥ 〈δµ〉2N so

SNR2
optimal ≥ SNR2

photon counting ≥ SNR2
energy integrating

with the SNR being equal only with zero width spectra that provide no energy information.
The optimal weighting function in the low contrast case is also interesting. Again sub-

stituting the equations for the sums and differences of nf and nb in the general formula
(7)

w(E) = C
nf (E)− nb(E)

nf (E) + nb(E)
= −Ctfδµ ∼ δµ

That is, the optimal weighting function is proportional to the difference of the attenuation
coefficients. By my discussion of attenuation coefficients, they can be approximated by a
two-function basis set. One possibility is the Compton scattering/photoelectric basis set.
The Compton part does not vary much with energy and depends on electron density, so
it is approximately the same for all biological materials. The difference of the attenuation
coefficients is mainly the photoelectric interaction, which varies the inverse of the cube of
energy 1/E3. The optimal weighting function decreases rapidly with energy. Notice that
this is the opposite of the energy integrating weighting function, which is proportional to
energy.

Discussion

The optimal SNR provides a useful yardstick to gauge the performance of imaging sys-
tems that is closely related to detective quantum efficiency (DQE). However, my discus-
sion so far assumes that we measure the full, high-resolution energy spectrum. Since
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we know that the quantity being measured, the attenuation coefficient, is a smooth low-
dimensionality function, it may be possible to achieve close to optimal SNR with low-
resolution measurements. That was the principal subject of my paper[1] and I will discuss
it in the following posts. My next describes a Monte Carlo simulation of the theoretical
results in this post.

–Bob Alvarez
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