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Logarithm of PHA with deadtime

The logarithm of the data is often used in x-ray imaging systems because it is (very)
approximately proportional to the line integral. The statistics of the log of the counts in
photon counting detectors are are different than those of the counts as summarized in
my last post and I derive them in this post. I then test the formulas using a Monte Carlo
simulation.

General formulas for expected value, variance, and covariance of log of
counts

With a counting detector, the logarithm is mathematically ill-defined because the counts
can have a value of zero. In hardware implementations, a value of one is usually added to
the data. This does not affect the rersults because typically the counts are much greater
than one. Here, I will assume that this has been done so the logarithm of the data is
mathematically well behaved.

Suppose we have a random variable X and we want to derive expressions for the mean
and variance of Y = log(X). We can use a general result[1] based on a series expansion
of a function y = g(x) about the expected value λ = 〈X〉

g(x) = g(λ) + g′(λ)(x − λ) + g′′(λ)
(x − λ)2

2
+ . . . (1)

Using this series,

〈g (X)〉 ≈ g(λ) + g′′(λ)
σ2

x

2

var[g (X)] ≈
[

g′(λ)
]2

σ2
x

If g(x) = log(x) then g′(x) = 1
x

and g′′(x) = − 1
x2 . Combining these results with those of

the previous section gives the following for the log random variable log(X)

〈log(X)〉 = log(λ) −
σ2

x

2λ2
+ . . . (2)

var [log(X)] ≈
σ2

x

λ2

For counting variables that are approximately Poisson distributed, σ2
x ≈ λ and λ � 1, so

the second term in Eq. 2 is much smaller than the first and

〈log(X)〉 ≈ log(λ) (3)

We also require the covariance. Using the identity cov(X,Y) = 〈XY〉 − 〈X〉 〈Y〉,

cov [log(X), log(Y)] = 〈log(X) log(Y)〉 − 〈log(X)〉 〈log(Y)〉 . (4)

To evaluate the first term in (4), we can use

log(X) = log

[

〈X〉

(

1 +
δX

〈X〉

)]

≈ log (〈X〉) +
δX

〈X〉
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with a similar expression for log(Y). With these two expansions, the first term becomes

〈log(X) log(Y)〉 ≈ log [〈X〉] log [〈Y〉] +
cov(X,Y)

〈X〉 〈Y〉
. (5)

Substituting Eq. 5 in Eq. 4 and using the fact that, from Eq. 3, for a counting variable,
〈log(X)〉 ≈ log(〈X〉),

cov [log(X), log(Y)] ≈
cov(X,Y)

〈X〉 〈Y〉
. (6)

The general formulas for the log variables are summarized in the first table:

mean value 〈log(X)〉 ≈ log(〈X〉)

variance var [log(X)] ≈ var(X)

〈X〉2

covariance cov [log(X), log(Y)] ≈ cov(X,Y)
〈X〉〈Y〉

while from my last post the formulas for the mean, variance, and covariance of the counts
in PHA bins Mk are

mean value 〈Mk〉 = 〈M〉 pk

variance var (Mk) = 〈M〉 pk + (var(M) − 〈M〉) p2
k

covariance cov (Mj ,Mk) = pjpk (var(M) − 〈M〉)
Combining these, we can compute the stats for the logarithm of the PHA bin counts

log(Mk).

Monte Carlo simulation

Since the formulas for the log variables are in terms of the count statistics, we can
simulate them using a straightforward extension of the code from my last post. The
code for this post was used to compare the theoretical formulas and the Monte Carlo re-
sults. The mean and variance data are plotted in Fig. 1 and the covariance in Fig. 2

Discussion

The Monte Carlo results and the theoretical formulas are in good agreement. As I noted
previously, the Monte Carlo variance and covariance are noisier than the mean values.

It is worth emphasizing that the changes in the statistics in this and my previous posts
is due to differences in the assumed parameters of the detectors. In all cases, the photon
numbers and spectrum did not change. This means that in our processing of the data we
need to know these parameters and rely on them being constant or having some way to
predict them. It is probable that the parameters will be different for different detectors in
the same array.

In the early days of CT, differences in detectors were a major problem leading to the
dreaded ring artifacts. I spent a lot of time trying to correct these differences and never
succeeded completely. In retrospect, I believe that the differences were not only in gain but
in the energy spectral response of different channels of an array. Ultimately manufacturers
solved this problem mainly by improving the detectors themselves and reducing the inter-
channel variations.

I think that with photon counting detectors the improvements will come mainly from
improvements in their parameters and much less from algorithms to correct their defects.
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Figure 1: Comparison of theoretical formulas and Monte Carlo simulation.
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Figure 2: Comparison of covariance formula and Monte Carlo simulation.



However, the theory developed here helps us to understand and specify the range and
tolerance required for the detectors.
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