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Deadtime-3 Pulse Height Analysis Theory

In previous posts, I discussed the mean and variance and the energy spectrum of photon
counting with deadtime. In this post, I will describe the statistics of pulse height analysis
(PHA) data as a function of the deadtime of the detector. I will analyze the idealized case
with perfect energy bins with zero transition width and no overlap and no added electronic
noise. With these assumptions and no deadtime, the number of counts in each bin is
Poisson distributed with a mean value equal to the number of incident photons and the
data in different bins are independent. With deadtime, the PHA data mean and variance
are smaller than those with no deadtime. In addition, the data in different bins become
negatively correlated.

In my next post, I will describe a Monte Carlo simulation to validate the formulas derived
here.

The derivation here is taken from a recent paper by Wang et al.[1]. The approach is
first to derive statistics with a fixed number of recorded counts and then to use condi-
tional expectation, variance, and covariance to derive the statistics with random numbers
of recorded counts. By fixing the recorded counts, the counts for the PHA bins become
multinomial random vectors. So, first I will derive the basic properties a multinomial ran-
dom vector. Then, I will summarize the formulas for conditional statistics and apply them
to the PHA count data.

The multinomial distribution

The multinomial distribution is a generalization of the binomial random variable that is
discussed in most probability textbooks. You will recall that a binomial is the number of
successes in n independent trials if the probability of success in each trial is p. With
a multinomial, there are more than two possible outcomes of each trial ( see Ross [2]
Section 6.1). If there are n trials with r possible outcomes with probabilities pr r = 1 . . . r

and Xj , j = 1 . . . r is the number of successes for outcome j , then the probability mass
function of the joint distribution of the Xj is
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I will derive the moments of the multinomial distribution using the moment generating
function, which, for a joint distribution, is defined to be (see Ross [2] Section 7.6)

MX (t1, . . . , tr) =
〈
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〉

In my notation 〈·〉 is the expected value. This function can be derived by using the definition
of expected value with the probability mass function in Eq. 1
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The multinomial theorem from elementary algebra gives the expansion of a multinomial
to the n’th power

(x1 + x2 + · · · + xr)
n =

∑

{ki:
∑

ki=n}

n!

k1!k2! · · · kr!
xk1

1 xk2

2 · · · xkr

r (3)

Comparing this to Eq. 2, we see that by substituting xk = pke
tk
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We can use the moment generating function in Eq. 4 to derive the moments using the
general relation
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Taking the first derivative, the expected value of any component of the multinomial is
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Taking another derivative, the second moment is
〈
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Notice that the individual counts have the same mean and variance as a binomial random
variable. This makes sense since in any trial, a particular case will occur with probability
pk.

Taking derivatives with respect to tj and tk, the covariance for j 6= k is

Cov(Xj ,Xk) = −npjpk

Of course, if j = k, Cov(Xk,Xk) = V ar(Xk).
Conditional expectation and variance

Ross[2] discusses conditional expectation in Section 7.4. He proves the following result

〈X〉 = 〈〈X|Y 〉〉Y

In addition, I will give a proof for the conditional covariance formula (see Wikipedia)

cov(X,Y ) = 〈cov(X,Y |Z)〉 + cov(〈X|Z〉 , 〈Y |Z〉) (5)

This can be proved by starting with the computational formula for covariance

cov(X,Y ) = 〈XY 〉 − 〈X〉 〈Y 〉

Rewriting the right hand side by using conditional expectation with the variable Z,

cov(X,Y ) = 〈〈XY |Z〉〉 − 〈X|Z〉 〈Y |Z〉 (6)
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Using the covariance computational formula again, 〈XY |Z〉 = cov(X,Y |Z)+〈X|Z〉 〈Y |Z〉.
Substituting in the first term on the right hand side of (6)

cov(X,Y ) = 〈cov(X,Y |Z) + 〈X|Z〉 〈Y |Z〉〉 − 〈X|Z〉 〈Y |Z〉
= 〈cov(X,Y |Z)〉 + 〈〈X|Z〉 〈Y |Z〉〉 − 〈X|Z〉 〈Y |Z〉

(7)

where I have used the fact that the expectation of a sum is the sum of the expectations.
The last two terms of (7) are the computational formula for cov(〈X|Z〉 , 〈Y |Z〉), so we have
derived the conditional covariance formula, Eq. 5.

Since var(X) = cov(X,X), we can use (5) to show that the formula for conditional
variance is

var(X) = 〈var(X|Y )〉 + var (〈X|Y 〉) (8)

Statistics of PHA data with deadtime

Now we are ready to derive the statistics of PHA data with deadtime. The derivation here
will follow that in Wang et al.[1]. As I discussed in my blog post, the spectrum of the
measured energies with deadtime is

Sdeadtime(E) = N0

∞
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)
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where s(E) = S(E)
N0

, S(E) is the incident energy spectrum, and N0 =
∫

S(E)dE. Each
term in the sum corresponds to k additional photons arriving during the dead time and, by
definition, s(0) ∗ s = s.

With PHA, we group the measured energies into r bins, corresponding to energies from
[Ek−1 : Ek, k = 1 . . . r]. Suppose we have a fixed number of recorded counts, M . Then,
since the photons have random energies, each bin Mk|M, k = 1 . . . r counts the number
of photons with energies in the bin energy range. The probability for each bin is

pk =

∫ Ek

Ek−1
Sdeadtime(E)dE

∫

Sdeadtime(E)dE

and the counts are components of a multinomial random vector. By the results above, the
expected value and the variance of the counts in a bin for fixed M are

〈Mk|M〉 = Mpk

var(Mk|M) = Mpk(1 − pk).

Applying the conditional expectation formula, the mean value for each bin is

〈Mk〉 = 〈〈Mk|M〉〉
= 〈Mpk〉
= 〈M〉 pk

(10)

We can apply the laws of conditional variance Eq. 8 and covariance Eq. 5 to derive the
statistics of the PHA data. First the variance

var(Mk) = 〈var(Mk|M)〉 + var (〈Mk|M〉)
= 〈Mpk(1 − pk)〉 + var (Mpk)
= pk(1 − pk) 〈M〉 + p2

kvar(M)
= 〈M〉 pk + (var(M) − 〈M〉) p2

k

(11)
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The covariance can be derived similarly

cov(Mj ,Mk) = 〈cov(Mj ,Mk|M)〉 + cov (〈Mj |M〉 , 〈Mk|M〉)
= −pjpk 〈M〉 + pjpkvar(M)
= pjpk (var(M) − 〈M〉)

(12)

Discussion

The expected value in Eq. 10 is straightforward but pk is the fraction of the distorted
spectrum with non-zero deadtime, Eq. 9, in each energy bin. In a typical x-ray imaging
system, this spectrum and therefore the fractions can change markedly since the incident
count rate can vary by a factor of 100 from air to the interior of the object.

If the deadtime is zero, then the total recorded counts M are Poisson distributed with
mean 〈M〉 = λT that is equal to the variance var(M) = λT . Therefore, by Eq. 11, the
variance of the counts in each bin is also equal to the expected value. With non-zero
deadtime, my previous post shows that the expected value and variance for large counts
are

〈M〉 =
λT

1 + λτ

var(M) =
λT

(1 + λτ)3

where λ is the incident count rate, T is the integration time, and τ is the deadtime. Note
that in the formula for the spectrum with deadtime, Eq. 9, above, N0 = λT . In this
case, var(M) < 〈M〉, so from Eq. 11 the variance of the PHA bin counts is also less than
expected from Poisson statistics, var(Mk) < 〈M〉 pk. This makes sense since the photons
that arrive during the deadtimes do not change the counts so the variance is reduced.

Also, Eq. 12 shows that with zero deadtime so that var(M) = 〈M〉, the covariance is 0.
With non-zero deadtime, var(M) < 〈M〉 and the covariance is negative.
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