
aprendtech.com >> blog >> this post
If you have trouble viewing this, try the pdf of this post. You can download the code

used to produce the figures in this post.

A projection simulator–Matlab implementation

edit: Sep 9, 2011 I extended the code to include convex polygons and renamed the func-
tion as CTProjSim .

I previously discussed the rationale, the C++ implmentation, and the the Matlab interface
for a computed tomography projection simulator. In this post, I discuss a Matlab-only im-
plementation of a simulator. The simulator is includes ellipses and convex polygons.The
projection lines are assumed parallel but it is simple and can be (fairly) easily extended to
other object types and geometries.

Ellipse

The geometry for the ellipses is shown in Fig. 1. With this geometry, the length of the
intersection of the projection line with an ellipse is

T =

{

2ab
√

s2
m − s2/s2

m |s| ≤ sm

0 |s| > sm

where s is the distance of the line L from the center of the ellipse and θ is the angle from
the perpendicular of the line to the principal axis of the ellipse. Also, the maximum offset
of the ellipse perpendicular to the projection line is s2

m = a2 cos2 (θ) + b2 sin2 (θ).The code
of the function CTProjSim is a straightforward implementation of these formulas.

I used the function to compute the projections of the Shepp-Logan phantom and recon-
structed with my CTrecon function. The results are shown in Fig. 2.

Convex polygon

We can use concepts from my previous posts on intersection of line segments and polylines
to compute the intersection of a line with a polygon. I assume the polygon is convex so
the line can intersect with at most two segments of the polygon. The geometry is shown
in Fig. 3. In two dimensions, we can specify a line by a vector n through the origin and
perpendicular to the line. We can write n as nn̂, where n̂ is a unit length vector. If the line
passes through the origin, n = 0, but we still know its direction from n̂.

A point on the line is
rL = nn̂ + tŝ

while a point on the line segment is

rS = P1 + ud.

At the intersection,
rL = nn̂ + tŝ = rS = P1 + ud.

Taking the dot product of this equation with n̂

n = n̂ ·P1 + un̂ · d

http://www.aprendtech.com
http://www.aprendtech.com/wordpress
http://aprendtech.com/wordpress/?p=159
http://www.aprendtech.com//blog/P14ctsim_matlab/P14ctsim_matlab.pdf
http://www.aprendtech.com//blog/P14ctsim_matlab/P14ctsim_matlab.zip
http://aprendtech.com/wordpress/?p=89
http://aprendtech.com/wordpress/?p=101
http://aprendtech.com/wordpress/?p=104
http://aprendtech.com/wordpress/?p=74
http://aprendtech.com/wordpress/?p=140
http://aprendtech.com/wordpress/?p=150

x

y

T

+

n̂

θ
ellipse

θ
proj line

s

sm

Figure 1: Geometry of simulator. The ellipse has major and minor semi-axes a and b
and the major axis is at angle θellipse with the x-axis. The ellipse center is
zell−centerand the perpendicular to the projection line is n̂. Therefore the offset
of the center along the projection line perpendicular is ellipse_center_offset =
n̂ · zell−center.

0 200 400 600
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Figure 2: Reconstruction of projections of Shepp-Logan phantom produced with
CTProjSim. My CTrecon function was used to reconstruct so the results do
not have the offsets introduced by the Matlab iradon function. The red lines are
the accurate values of the phantom density.

http://aprendtech.com/wordpress/?p=74

x

y

o
o

o
o

o

line segment

detector array

projection
line

n̂

n

u

Figure 3: Intersection of a line and a line segment. The line is specified by a vector n

through the origin and perpendicular to it. We can express n is nn̂, where n̂

is a unit length vector. The line segment is specified by an endpoint P1 and a
vector d to the other endpoint. The intersection of the line with the extended line
segment is at P1 + ud. The intersection is within the line segment if 0 ≤ u < 1 .

Solving for u

u =
n − n̂ ·P1

n̂ · d

To find the intersection of a line with a polygon, we can test 0 ≤ u < 1 for all the
segments of the polygon sides. If there are two intersections, then the line overlaps the
polygon. We can compute the intersect length T as

T = |rintersect,1 − rintersect,2|

Multiplying T by the (possibly vector) density gives the line integral.
These formulas are implemented in the CTProjSim along with the code for the inter-

section with ellipses. Line integrals are linear so we can add the line integrals for different
shapes for each projection line.

I created the projections of a hexagon embedded in an ellipse and reconstructed them
to produce the image in Fig. 4. The sharp vertexes of the polygon cause large alias-
ing artifacts in the reconstruction. I reduced them somewhat by filtering them with the
′filter_type′,′ hamming′,′ freq_cutoff ′, 0.9 parameters in CTrecon. You can download the code
to reproduce the figures in this post.

Last edited Sep. 9, 2011
c©2011 by Aprend Technology and Robert E. Alvarez
Linking is allowed but reposting or mirroring is expressly forbidden.

http://www.aprendtech.com//blog/P14ctsim_matlab/P14ctsim_matlab.zip

Figure 4: Reconstructed projections of a hexagon embedded in an ellipse.

